判斷函數(shù)
在(1,+¥)上的單調(diào)性.年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有.
(1)、判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)、解不等式:;
(3)、若對(duì)所有的恒成立,其中(是常數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有.
(1)判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若對(duì)所有的恒成立,其中(是常數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆內(nèi)蒙古呼倫貝爾市高二上期中考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(8分)已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有.
(1)、判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)、解不等式:;
(3)、若對(duì)所有的恒成立,其中(是常數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆內(nèi)蒙古呼倫貝爾市高二期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有.
(1)、判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)、解不等式:;
(3)、若對(duì)所有的恒成立,其中(是常數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三第一次月考數(shù)學(xué)理 題型:解答題
(本小題滿分13分)
已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng) 時(shí),總有.
(1)判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若對(duì)所有的恒成立,其中(是常數(shù)),試用常數(shù)表示實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com