已知雙曲線C:x2-y2=m2(m>0),直線l過C的一個焦點,且垂直于x軸,直線l與雙曲線C交于A,B兩點,則
|AB|
2m
等于( �。�
A、1
B、
2
C、2
D、
1
2
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:將雙曲線方程化為標準方程,求得其中一個焦點,代入雙曲線方程,得到AB的長,即可得到答案.
解答: 解:雙曲線C:x2-y2=m2(m>0),即為
x2
m2
-
y2
m2
=1,
設其中一個焦點為(
2
m,0),
則令x=
2
m,代入雙曲線方程為y2=2m2-m2=m2,
即y=±m(xù),
即有|AB|=2m,
|AB|
2m
=1.
故選A.
點評:本題考查雙曲線的方程和性質,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),x∈R,則f′(x0)表示( �。�
A、自變量x=x0時對應的函數(shù)值
B、函數(shù)值y在x=x0時的瞬時變化率
C、函數(shù)值y在x=x0時的平均變化率
D、無意義

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)6sin(-90°)+3sin0°-8sin270°+12cos180°;
(2)10cos270°+4sin0°+9tan0°+15cos360°;
(3)2cos
π
2
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
-cos2
π
6
+sin
2

(4)sin2
π
3
+cos4
2
-tan2
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a5-a1=15,
1
2
a4為a2與6的等差中項,求數(shù)列{an}的公比及通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AB為圓O的直徑,C為圓O上一點,連接AC并延長使AC=CP,連接PB并延長交圓O于點D,過點P作圓O的切線,切點為E.
(1)證明:AB•DP=EP2;
(2)若AB=2
5
,EP=4
2
,求BC的長度.

查看答案和解析>>

同步練習冊答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹