“ab≠0”是指.


  1. A.
    a≠0且b≠0
  2. B.
    a≠0或b≠0
  3. C.
    a、b中至少有一個(gè)不為0
  4. D.
    a、b不同時(shí)為0
A
ab≠0是指a≠0且b≠0,所以選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線(xiàn)與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對(duì)任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學(xué)過(guò)的指、對(duì)數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課程高中數(shù)學(xué)疑難全解 題型:013

“ab≠0”是指(  ).

[  ]

A.a≠0且b≠0

B.a≠0或b≠0

C.a、b中至少有一個(gè)不為0

D.a、b不同時(shí)為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市十三校2012屆高三第二次聯(lián)考數(shù)學(xué)文科試題 題型:044

現(xiàn)代城市大多是棋盤(pán)式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線(xiàn)距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1),B(x2,y2)兩點(diǎn)間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.

(1)已知A(-3,-3),B(3,2),求A、B兩點(diǎn)的距離D(AB)

(2)求到定點(diǎn)M(1,2)的“直角距離”為2的點(diǎn)的軌跡方程.

并寫(xiě)出所有滿(mǎn)足條件的“格點(diǎn)”的坐標(biāo)(格點(diǎn)是指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).

(3)求到兩定點(diǎn)F1、F2的“直角距離”和為定值2a(a>0)的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.

①F1(-1,0),F(xiàn)2(1,0),a=2;

②F1(-1,-1),F(xiàn)2(1,1),a=2;

③F1(-1,-1),F(xiàn)2(1,1),a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市十三校2012屆高三第二次聯(lián)考數(shù)學(xué)理科試題 題型:044

現(xiàn)代城市大多是棋盤(pán)式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線(xiàn)距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1),B(x2,y2)兩點(diǎn)間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.

(1)在平面直角坐標(biāo)系中,寫(xiě)出所有滿(mǎn)足到原點(diǎn)的“直角距離”為2的“格點(diǎn)”的坐標(biāo).(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))

(2)求到兩定點(diǎn)F1、F2的“直角距離”和為定值2a(a>0)的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.

①F1(-1,0),F(xiàn)2(1,0),a=2;

②F1(-1,-1),F(xiàn)2(1,1),a=2;

③F1(-1,-1),F(xiàn)2(1,1),a=4.

(3)寫(xiě)出同時(shí)滿(mǎn)足以下兩個(gè)條件的“格點(diǎn)”的坐標(biāo),并說(shuō)明理由(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).

①到A(-1,-1),B(1,1)兩點(diǎn)“直角距離”相等;

②到C(-2,-2),D(2,2)兩點(diǎn)“直角距離”和最。

查看答案和解析>>

同步練習(xí)冊(cè)答案