已知x>0,y>0,2x+y=
1
3
,則
1
x
+
1
y
的最小值是
9+6
2
9+6
2
分析:由題意可得6x+3y=1,把
1
x
+
1
y
 化為
6x+3y
x
+
6x+3y
y
,即 9+
3y
x
+
6x
y
,再利用基本不等式求得它的最小值.
解答:解:∵已知x>0,y>0,2x+y=
1
3
,則6x+3y=1,
1
x
+
1
y
=
6x+3y
x
+
6x+3y
y
=9+
3y
x
+
6x
y
≥9+2
18
=9+6
2
,當(dāng)且僅當(dāng) 
3y
x
=
6x
y
時(shí),取等號(hào),
1
x
+
1
y
的最小值是9+6
2

故答案為 9+6
2
點(diǎn)評(píng):本題主要考查基本不等式的應(yīng)用,式子的變形是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,y>0且x+y=xy,則x+y的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

(2007寧夏,7)已知x0y0,x,ab,y成等差數(shù)列,x,c,d,y成等比數(shù)列,則的最小值是

[  ]

A0

B1

C2

D4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省合肥八中2012屆高三第三次段考數(shù)學(xué)理科試題 題型:013

已知x>0,y>0,x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列,則的最小值是

[  ]
A.

0

B.

1

C.

2

D.

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一下學(xué)期第7周周練數(shù)學(xué)試卷(解析版) 題型:選擇題

已知x>0,y>0,x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列,則的最小值是(  ) A.0  B.1  C.2  D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知集合M={(x,y)|x+y=1},映射f:M→N,在f作用下點(diǎn)(x,y)的象是(2x,2y),則集合N=


  1. A.
    {(x,y)|x+y=2,x>0,y>0}
  2. B.
    {(x,y)|xy=1,x>0,y>0}
  3. C.
    {(x,y)|xy=2,x<0,y<0}
  4. D.
    {(x,y)|xy=2,x>0,y>0}

查看答案和解析>>

同步練習(xí)冊(cè)答案