已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,若右焦點(diǎn)到
直線的距離為3。
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn)M,N,當(dāng)|AM|=|AN|時(shí),求m的
取值范圍.
(1)(2)
【解析】本題考查直線和橢圓的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
(1)依題意可設(shè)橢圓方程為,則右焦點(diǎn)由題設(shè)
,解得, 故所求橢圓的方程可得。
(2)設(shè) ,,.P為弦MN的中點(diǎn),
由得
因直線與橢圓相交,故
即結(jié)合韋達(dá)定理得到。
解:(1)依題意可設(shè)橢圓方程為,則右焦點(diǎn)由題設(shè)
,解得, 故所求橢圓的方程為
(2)設(shè) ,,.P為弦MN的中點(diǎn),
由得
因直線與橢圓相交,故
即(。
故
所以 又
把(2)代入 (1)得
由(2)得 解得
綜上求得m的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
AM |
AN |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com