20.若對(duì)任意x∈(0,$\frac{1}{2}$),恒有4x<logax(a>0且a≠1),則實(shí)數(shù)a的取值范圍是[$\frac{\sqrt{2}}{2}$,1).

分析 對(duì)任意的x∈(0,$\frac{1}{2}$),4x≤logax恒成立,化為x∈(0,$\frac{1}{2}$)時(shí),y=logax的圖象恒在y=4x的圖象的上方,
在同一坐標(biāo)系中,分別畫出兩個(gè)函數(shù)的圖象,由此求出實(shí)數(shù)a的取值范圍.

解答 解:∵a∈(0,1)∪(1,+∞),
當(dāng)x∈(0,$\frac{1}{2}$)時(shí),函數(shù)y=4x的圖象如下圖所示:

∵對(duì)任意的x∈(0,$\frac{1}{2}$)時(shí),總有4x<logax恒成立,
若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x圖象的上方(如圖中虛線所示)
∵y=logax的圖象與y=4x的圖象交于($\frac{1}{2}$,2)點(diǎn)時(shí),
a=$\frac{\sqrt{2}}{2}$,
故虛線所示的y=logax的圖象對(duì)應(yīng)的底數(shù)a應(yīng)滿足$\frac{\sqrt{2}}{2}$≤a<1.
故答案為:[$\frac{\sqrt{2}}{2}$,1).

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用問題,熟練掌握指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.原命題“若xy=1,則x,y互為倒數(shù)”,則( 。
A.逆命題與逆否命題真,否命題假B.逆命題假,否命題和逆否命題真
C.逆命題和否命題真,逆否命題假D.逆命題、否命題、逆否命題都真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知離散型隨機(jī)變量ξ的分布列為
ξ102030
P0.6a$\frac{1}{4}$-$\frac{a}{2}$
則D(3ξ-3)等于(  )
A.42B.135C.402D.405

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若$\overrightarrow a=({2,1}),\overrightarrow b=({-1,1}),({2\overrightarrow a+\overrightarrow b})∥({\overrightarrow a-m\overrightarrow b})$,則m=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=60°,△PAB是邊長(zhǎng)為a的正三角形,且平面PAB⊥平面ABCD,已知點(diǎn)M是PD的中點(diǎn).
(1)證明:PB∥平面AMC;
(2)求三棱錐P-AMC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2,數(shù)列{bn}滿足bn=an•log2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為4cm,高為10cm,則一質(zhì)點(diǎn)自點(diǎn)A出發(fā),沿著三棱柱的側(cè)面,繞行兩周到達(dá)點(diǎn)A1的最短路線的長(zhǎng)為( 。
A.16cmB.12$\sqrt{3}$cmC.24$\sqrt{3}$cmD.26cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z滿足(1+i)•z=2-i,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=( 。
A.$\frac{1-3i}{2}$B.$\frac{1+3i}{2}$C.$\frac{-1-3i}{2}$D.$\frac{-1+3i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知等比數(shù)列{an}的前6項(xiàng)和S6=21,且4a1、$\frac{3}{2}$a2、a2成等差數(shù)列,則an=$\frac{{{2^{n-1}}}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案