設(shè)f(θ)=2cos2θ+
3
sin2θ,θ∈(0,
π
4
)

(1)求f(θ)的值域;
(2)若y=x+
a
x
(x>0),試問(wèn)實(shí)數(shù)a為何值時(shí),y≥f(θ)恒成立?
(1)f(θ)=2sin(2θ+
π
6
)
+1;
 &0<θ<
π
4
?&
π
6
<2θ+
π
6
3

?f(θ)∈(2,3]
∴f(θ)的值域:(2,3].
(2)∵f(θ)max=3,
x+
a
x
≥3
,在(0,+∞)恒成立
a≥x(3-x)在(0,+∞)恒成立,
x(3-x)=-x2+3x=-(x-
3
2
)2+
9
4
9
4
,
x=
3
2
∈(0,+∞)
時(shí)取等號(hào)
∴只要a≥
9
4
即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=2cos(
π
4
 x+
π
3
),若對(duì)任意的x∈R,恒有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(cosx,1-asinx),
n
=(cosx,2),設(shè)f(x)=
m
n
,且函數(shù)f(x)的最大值為g(a).
(Ⅰ)求函數(shù)g(a)的解析式.
(Ⅱ)設(shè)0≤θ≤2π,求函數(shù)(2cosθ+1)的最大值和最小值以及對(duì)應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
a
b
.其中向量
a
=(
2
sinωx,
2
cosωx+1)
,
b
=(
2
cosωx,
2
cosωx-1)

(1)當(dāng)ω=1,x∈(0,
π
2
)
時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)ω=-1時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(2cos
ωx
2
,2sin
ωx
2
),
b
=(sin
ωx
2
,
3
sin
ωx
2
),ω>0
,記函數(shù)f(x)=
a
b
-
3
4
|
a
|2
,且以π為最小正周期.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知a=1,b=
2
,f(A)=0,求角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(θ)=
2cos(2 π-θ)sin(
π
2
+θ)
1
tan(π-θ)
•cos(
2
-θ)

(1)化簡(jiǎn)f(θ)
(2)若α為第四象限角,求滿足f(α)=1的α值.

查看答案和解析>>

同步練習(xí)冊(cè)答案