(坐標(biāo)系與參數(shù)方程選做題)以極坐標(biāo)系中的點(diǎn)(1,1)為圓心,1為半徑的圓的方程是______.
在對(duì)應(yīng)的直角坐標(biāo)系中,圓心的坐標(biāo)為(cos1,sin1),圓的直角坐標(biāo)方程為  (x-cos1)2+(y-sin1)2=1,
x2+y2-2xcos1-2ysin1=0,由x=ρcosθ,y=ρsinθ,可得  ρ2=2ρcos1cosθ+2ρsin1sinθ,
ρ=2(cos1cosθ+sin1sinθ )=2cos(θ-1),
故答案為:ρ=2cos(θ-1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,單位長(zhǎng)度一致的坐標(biāo)系下,已知曲線(xiàn)C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線(xiàn)C2的極坐標(biāo)方程為ρsinθ=a,則這兩曲線(xiàn)相切時(shí)實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線(xiàn)ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為
2
π
4
2
,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線(xiàn)
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線(xiàn)ρsinθ=1(ρ∈R,0≤θ<π)交點(diǎn)M的極坐標(biāo)為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點(diǎn)A(1,
π
3
),B(3,
3
),O是極點(diǎn),則△AOB的面積等于
3
3
4
3
3
4

(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點(diǎn)P(2,
π3
),則過(guò)點(diǎn)P且平行于極軸的直線(xiàn)的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案