精英家教網(wǎng)長方體ABCD-A1B1C1D1中,AB=2,BC=1,AA1=1
(1)求直線AD1與B1D所成角;
(2)求直線AD1與平面B1BDD1所成角的正弦.
分析:(1)建立空間直角坐標(biāo)系,求出直線AD1與B1D的方向向量,利用向量的夾角公式,即可求直線AD1與B1D所成角;
(2)求出平面B1BDD1的法向量,利用向量的夾角公式,即可求直線AD1與平面B1BDD1所成角的正弦.
解答:精英家教網(wǎng)解:(1)建立如圖所示的直角坐標(biāo)系,則A(0,0,0),D1(1,0,1),B1(0,2,1),D(1,0,0).
AD1
=(1,0,1),
B1D
=(1,-2,-1)
,
∴cos
AD1
,
B1D
=
1-1
2
6
=0,
AD1
B1D
=90°,
∴直線AD1與B1D所成角為90°;
(2)設(shè)平面B1BDD1的法向量
n
=(x,y,z),則
DD1
=(0,0,1)
DB
=(-1,2,0),
z=0
-x+2y=0
,
∴可取
n
=(2,1,0),
∴直線AD1與平面B1BDD1所成角的正弦為
2
2
5
=
10
5
點(diǎn)評(píng):本題考查線線角,考查線面角,考查向量知識(shí)的運(yùn)用,正確求向量是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在長方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點(diǎn)的平面截去長方體的一個(gè)角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個(gè)幾何體的體積為10.
(1)求棱A1A的長;
(2)求點(diǎn)D到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,長方體ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中點(diǎn),N是B1C1中點(diǎn).
(1)求證:A1、M、C、N四點(diǎn)共面;
(2)求證:BD1⊥MCNA1;
(3)求證:平面A1MNC⊥平面A1BD1;
(4)求A1B與平面A1MCN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 則三棱錐A1-ABC的體積為( 。
A、10B、20C、30D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知多面體ABCD-A1B1C1D1,它是由一個(gè)長方體ABCD-A'B'C'D'切割而成,這個(gè)長方體的高為b,底面是邊長為a的正方形,其中頂點(diǎn)A1,B1,C1,D1均為原長方體上底面A'B'C'D'各邊的中點(diǎn).
(1)若多面體面對角線AC,BD交于點(diǎn)O,E為線段AA1的中點(diǎn),求證:OE∥平面A1C1C;
(2)若a=4,b=2,求該多面體的體積;
(3)當(dāng)a,b滿足什么條件時(shí)AD1⊥DB1,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn).
(1)求證:A1E⊥平面ADE;
(2)求三棱錐A1-ADE的體積.

查看答案和解析>>

同步練習(xí)冊答案