A. | $\overrightarrow a=4\overrightarrow{e_1}-5\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+4\overrightarrow{e_2}$ | B. | $\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+3\overrightarrow{e_2}$ | ||
C. | $\overrightarrow a=\frac{1}{2}\overrightarrow{e_1}+\frac{1}{3}\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+2\overrightarrow{e_2}$ | D. | $\overrightarrow a=2\overrightarrow{e_1},\overrightarrow b=-4\overrightarrow{e_2}$ |
分析 根據(jù)平面向量共線定理可得:存在唯一實數(shù)k,使$\overrightarrow{a}=k\overrightarrow$成立,則$\overrightarrow a$與$\overrightarrow b$共線,逐一判定即可.
解答 解:對于A:若$\overrightarrow{a}=k\overrightarrow$,則$4\overrightarrow{{e}_{1}}-5\overrightarrow{{e}_{2}}=k(3\overrightarrow{{e}_{1}}+4\overrightarrow{{e}_{2}})$,即4=3k,-5=4k,無解,故A不符合題意;
對于B,若$\overrightarrow{a}=k\overrightarrow$,則$\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}}=k(3\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}})$,1=3k,-1=3k,無解,故B不符合題意;
對于C,若$\overrightarrow{a}=k\overrightarrow$,則B,$\frac{1}{2}\overrightarrow{{e}_{1}}+\frac{1}{3}\overrightarrow{{e}_{2}}=k(3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})$,則k=$\frac{1}{6}$,故C符合題意;
對于D,∵向量$\overrightarrow{e_1}與\overrightarrow{e_2}$不共線,∴2$\overrightarrow{{e}_{1}}$與-4$\overrightarrow{{e}_{2}}$不共線;
故選:C.
點評 本題給出向量共線的共線定義、判定,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k≥8 | B. | k>8 | C. | k≥7 | D. | k>9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -e | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | e |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com