設(shè)數(shù)列{bn}(n∈N*)的前n項(xiàng)和為Sn,點(diǎn)(Sn,bn)恒在函數(shù)f(x)=-2x+2的圖象上;數(shù)列{an}(n∈N*)為等差數(shù)列,且a3=8,a7=20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
分析:(1)先根據(jù)a
3=8,a
7=20求得公差,進(jìn)而根據(jù)等差數(shù)列通項(xiàng)公式求得首項(xiàng),則數(shù)列{a
n}的通項(xiàng)公式可得.
(2)把b
n=S
n-S
n-1代入-2S
n+2=b
n,整理得3(S
n-1)=S
n-1-1判斷出數(shù)列{S
n-1}是以
為公比的等比數(shù)列,首項(xiàng)是S
1,則數(shù)列{S
n-1}通項(xiàng)公式可得,進(jìn)而求得S
n,最后根據(jù)-2S
n+2=b
n,求得求數(shù)列{b
n}的通項(xiàng)公式;
解答:解:(1)d=
=3
∴a
3=a
1+2d=8,a
1=2
∴a
n=2+(n-1)×3=3n-1
(2)依題意可知-2S
n+2=b
n,
2b
1+2=b
1,b
1=-2
∵當(dāng)n≥2時(shí),b
n=S
n-S
n-1,
∴-2S
n+2=S
n-S
n-1,整理得3(S
n-1)=S
n-1-1
數(shù)列{S
n-1}是以
為公比的等比數(shù)列,首項(xiàng)是S
1∴S
n-1=(-3)×(
)
n-1=-(
)
n-2
∴S
n=-(
)
n-2+1
∴b
n=2•(
)
n-2 點(diǎn)評(píng):本題主要考查了用數(shù)列遞推式求數(shù)列通項(xiàng)公式的問(wèn)題.考查了學(xué)生對(duì)數(shù)列問(wèn)題的綜合掌握.