△ABC中,內(nèi)角A,B,C所對邊分別為a,b,c且a=
3
,A=60°,C=45°
,則c=
2
2
分析:由A和C的度數(shù)分別求出sinA和sinC的值,再由a的值,利用正弦定理即可求出c的值.
解答:解:∵a=
3
,A=60°,C=45°
,
∴由正弦定理
a
sinA
=
c
sinC
得:c=
asinC
sinA
=
3
×
2
2
3
2
=
2

故答案為:
2
點(diǎn)評:此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理的結(jié)構(gòu)特征是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,C=
π
3

(Ⅰ)若△ABC的面積等于
3
,求a,b;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C對邊的邊長分別是a、b、c,已知c=2,C=
π
3
,△ABC的面積是
3
,求邊長a和b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武昌區(qū)模擬)在△ABC中,內(nèi)角A、B、C對邊長分別是a,b,c,已知c=2,C=
π
3

(I)若△ABC的面積等于
3
,求a,b
;
(II)若sinC+sin(B-A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a=6,b=4,C=120°,則△ABC的面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知C=
π
3

(1)若a=2,b=3,求邊c;
(2)若c=
3
,sinC+sin(B-A)=sin2A,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案