P是橢圓上的任意一點(diǎn),F1F2是它的兩焦點(diǎn),O為坐標(biāo)原點(diǎn),,則動(dòng)點(diǎn)Q的軌跡方程是      .

 

答案:
解析:

解:=,∴PF1PF2組成平行四邊形,PP的中點(diǎn)為原點(diǎn),∴ , 設(shè)Q(x, y), 則P()在橢圓上,∴點(diǎn)Q的軌跡方程是

答案:

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),P是橢圓上的任意一點(diǎn),則|PF1|•|PF2|的最大值是( 。
A、9
B、16
C、25
D、
25
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),P是橢圓上的任意一點(diǎn),則|PF1|•|PF2|的最大值是
25
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓具有性質(zhì):若A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0且a,b為常數(shù))上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)P是橢圓上的任意一點(diǎn),若直線PA和PB的斜率都存在,并分別記為kPA,kPB,那么kPA與kPB之積是與點(diǎn)P位置無(wú)關(guān)的定值-
b2
a2
.試對(duì)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0且a,b為常數(shù))寫(xiě)出類似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城一模)已知F1、F2分別是橢圓
x2
8
+
y2
4
=1
的左、右焦點(diǎn),點(diǎn)P是橢圓上的任意一點(diǎn),則
| |PF1|-|PF2| |
|PF1|
的取值范圍是
[0,2
2
+2]
[0,2
2
+2]

查看答案和解析>>

同步練習(xí)冊(cè)答案