要得到函數(shù)f(x)=sinx+cosx的圖象,可將函數(shù)g(x)=sinx-cosx的圖象( 。
A、向左平移
π
4
個(gè)單位
B、向右平移
π
4
個(gè)單位
C、向右平移
π
2
個(gè)單位
D、向左平移
π
2
個(gè)單位
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:分別把f(x)和g(x)化為sin(x+φ)的形式,然后在保持初相相同的條件下看自變量的變化,則答案可求.
解答: 解:f(x)=sinx+cosx=
2
sin(x+
π
4
)
=
2
sin[(x+
π
2
)-
π
4
]
,
g(x)=sinx-cosx=
2
sin(x-
π
4
)

∴要得到函數(shù)f(x)=sinx+cosx的圖象,可將函數(shù)g(x)=sinx-cosx的圖象向左平移
π
2
個(gè)單位.
故選:D.
點(diǎn)評:本題考查了兩角和與差的正弦函數(shù),考查了y=Asin(ωx+φ)的圖象變換,關(guān)鍵是看自變量的變換,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若a10=10,a19=100,前n項(xiàng)和Sn=0,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對由20個(gè)小學(xué)生、30個(gè)初中生、50個(gè)高中生組成的總體中,按分層抽樣抽取容量為n的樣本.如果在被抽取的樣本中有9名初中生,則在這次抽樣中每個(gè)個(gè)體被抽到的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c依次為函數(shù)f(x)=2x+x,g(x)=log2x-1,h(x)=2x-log 
1
2
x的零點(diǎn),則a,b,c的大小關(guān)系為( 。
A、a<b<c
B、a<c<b
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
AB
=(1,2),
BC
=(3,4),則|
AC
|=( 。
A、2
13
B、4
13
C、2
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=ax(a>0)上存在兩點(diǎn)M,N關(guān)于直線y=x-2對稱,則a的取值范圍是(  )
A、0<a<
10
3
B、0<a<
8
3
C、0<a<2
D、0<a<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=1,BC=4,∠B=60°,則△ABC的面積是( 。
A、2
3
B、
3
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把下列在平面內(nèi)成立的直線間的關(guān)系類比地推廣到空間直線間的關(guān)系,結(jié)論還正確的是(  )
(1)如果一條直線與兩條平行線中的一條相交,則比與另一條相交.
(2)如果一條直線與兩條平行線中的一條垂直,則比與另一條垂直.
(3)如果兩條直線同時(shí)與第三條直線平行,則這兩條直線平行.
(4)如果兩條直線同時(shí)與第三條直線垂直,則這兩條直線平行.
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋子中有5個(gè)大小相同的球,其中有3個(gè)黑球與2個(gè)紅球,如果從中任取兩個(gè)球,則取到兩個(gè)異色球的概率是( 。
A、
1
5
B、
3
10
C、
3
5
D、
2
5

查看答案和解析>>

同步練習(xí)冊答案