在平面直角坐標(biāo)系xOy中,以橢圓=1(a>b>0)上的一點A為圓心的圓與x軸相切于橢圓的一個焦點,與y軸相交于B、C兩點,若△ABC是銳角三角形,則該橢圓的離心率的取值范圍是________.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題
為了分析某籃球運動員在比賽中發(fā)揮的穩(wěn)定程度,統(tǒng)計了該運動員在6場比賽中的得分,用莖葉圖表示如圖所示,則該組數(shù)據(jù)的方差為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用17練習(xí)卷(解析版) 題型:解答題
為拉動經(jīng)濟增長,某市決定新建一批基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目個數(shù)分別占總數(shù)的,,,現(xiàn)在3名工人獨立地從中任意一個項目參與建設(shè).
(1)求他們選擇的項目所屬類別互不相同的概率.
(2)記X為3人中選擇的項目所屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用15練習(xí)卷(解析版) 題型:解答題
在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為C,半徑R=,求圓C的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:解答題
已知橢圓的焦點坐標(biāo)為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:填空題
若雙曲線=1(a>0,b>0)與直線y=x無交點,則離心率e的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用12練習(xí)卷(解析版) 題型:填空題
已知雙曲線=1(a>0,b>0)的一個焦點與拋物線y2=4x的焦點重合,且雙曲線的離心率等于,則該雙曲線的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用10練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}是各項均不為0的等差數(shù)列,其前n項和為Sn,點(an+1,S2n-1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).
(1)求an并證明數(shù)列{bn-1}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn=,證明:c1+c2+c3+…+cn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題
某學(xué)校有男、女學(xué)生各500名,為了解男、女學(xué)生在學(xué)習(xí)興趣與業(yè)余愛好方面是否存在顯著差異,擬從全體學(xué)生中抽取100名學(xué)生進行調(diào)查,則宜采用的抽樣方法是( )
A.抽簽法 B.隨機數(shù)法
C.系統(tǒng)抽樣法 D.分層抽樣法
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com