已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2)
②求函數(shù)f(x)兩個(gè)極值點(diǎn)所對(duì)應(yīng)的圖象上兩點(diǎn)之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個(gè)不同的極值點(diǎn),求t的取值范圍.
【答案】
分析:(1)①利用(a-b)
3=a
3-3a
2b+3ab
2-b
3可證;
②令f′(x)=3x
2-12x+3=0,設(shè)其兩根為(x
1,x
2)(x
1<x
2),利用韋達(dá)定理可得x
1+x
2=4,x
1x
2=1,進(jìn)而可求x
2-x
1,y
1-y
2,故可求函數(shù)f(x)兩個(gè)極值點(diǎn)所對(duì)應(yīng)的圖象上兩點(diǎn)之間的距離
(2)求導(dǎo)函數(shù),f′(x)=(3x
2-12x+3)e
x+(x
3-6x
2+3x+t)e
x=(x
3-3x
2-9x+t+3)e
x,函數(shù)g(x)=e
xf(x)有三個(gè)不同的極值點(diǎn),所以x
3-3x
2-9x+t+3=0有三個(gè)不等根,構(gòu)造函數(shù)h(x)=x
3-3x
2-9x+t+3,可知h(x)在(-∞,-1),(3,+∞)上遞增,在(-1,3)上遞減,從而h(-1)>0,h(3)<0,故可求t的取值范圍.
解答:(1)①證明:∵(a-b)
3=a
3-3a
2b+3ab
2-b
3∴a
3-b
3=(a-b)
3+3a
2b-3ab
2=(a-b)[(a-b)
2+3ab]=(a-b)(a
2+ab+b
2)
②解:令f′(x)=3x
2-12x+3=0,設(shè)其兩根為(x
1,x
2)(x
1<x
2)
∴x
1+x
2=4,x
1x
2=1
∴
設(shè)兩個(gè)極值點(diǎn)所對(duì)應(yīng)的圖象上兩點(diǎn)的坐標(biāo)為(x
1,y
1),(x
2,y
2)
則
=
∴函數(shù)f(x)兩個(gè)極值點(diǎn)所對(duì)應(yīng)的圖象上兩點(diǎn)之間的距離為
(2)解:f′(x)=(3x
2-12x+3)e
x+(x
3-6x
2+3x+t)e
x=(x
3-3x
2-9x+t+3)e
x
∵g(x)有三個(gè)不同的極值點(diǎn)
∴x
3-3x
2-9x+t+3=0有三個(gè)不等根;
令h(x)=x
3-3x
2-9x+t+3,則h′(x)=3x
2-6x-9=3(x+1)(x-3)
∴h(x)在(-∞,-1),(3,+∞)上遞增,在(-1,3)上遞減
∵h(yuǎn)(x)有三個(gè)零點(diǎn)
∴h(-1)>0,h(3)<0
∴t+8>0,t-24<0
∴-8<t<24
點(diǎn)評(píng):本題以函數(shù)為載體,考查導(dǎo)數(shù)的運(yùn)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,考查函數(shù)的極值,解題的關(guān)鍵是將函數(shù)g(x)=e
xf(x)有三個(gè)不同的極值點(diǎn),轉(zhuǎn)化為x
3-3x
2-9x+t+3=0有三個(gè)不等根.