8.函數(shù)f(x)=cos2x+6cos($\frac{π}{2}$-x)的最大值是5.

分析 利用二倍角余弦及誘導(dǎo)公式變形,然后換元,再由配方法求得函數(shù)的最大值.

解答 解:f(x)=cos2x+6cos($\frac{π}{2}$-x)
=1-2sin2x+6sinx=-2sin2x+6sinx+1.
令t=sinx,t∈[-1,1],
則原函數(shù)化為y=$-2{t}^{2}+6t+1=-2(t-\frac{3}{2})^{2}+\frac{11}{2}$,
∴當t=1時,y有最大值為$-\frac{1}{2}+\frac{11}{2}=5$.
故答案為:5.

點評 本題考查三角函數(shù)的最值,考查了換元法及配方法,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.如圖,點P是?ABCD邊AB上的一點,射線CP交DA的延長線于點E,若$\frac{AP}{CD}$=$\frac{2}{5}$,則$\frac{{S}_{△AEP}}{{S}_{△BCP}}$=$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}$+y2=1(a>0)的左右焦點分別為F1,F(xiàn)2,過橢圓C的右頂點和上頂點的直線l與圓x2+y2=$\frac{2}{3}$相切,橢圓C過點P(1,$\frac{{\sqrt{2}}}{2}$),直線PF1交y軸于Q,且$\overrightarrow{P{F_2}}$=2$\overrightarrow{QO}$,O為坐標原點.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓C的上頂點,過點M分別作直線MA、MB交橢圓C于A、B兩點,設(shè)這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:證明AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知一個等差數(shù)列{an}的前10項的和為100,前100項的和為10,求前110項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知$\vec a$=(2,-1),$\vec b$=(λ,3),若$\vec a$與$\vec b$垂直,則λ的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.定義在(0,+∞)上的單調(diào)函數(shù)f(x),?x∈(0,+∞),f(f(x)-x2)=2,則不等式f(x)>7x-11的解集為(0,3)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=lg(3+x)+lg(3-x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某工廠生產(chǎn)的廢氣經(jīng)過過慮后排放,過慮過程中廢氣的污染物數(shù)量P(單位:毫克/升)與時間t(單位:小時)間的關(guān)系為P=P0e-kt(P0,k均為正常數(shù)).如果經(jīng)過6個小時過慮還剩80%的污染物,為了使剩余污染物不高于51.2%,則至少需要多少小時?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某公司將進一批單價為8元的商品,若按10/個銷售,每天可賣出100個若銷售價上漲1元/個,則每天的銷售量就少10個.
(1)設(shè)商品的銷售上漲x元/個(0≤x≤10,x∈N),每天的利潤為y元試用列表法表示函數(shù)y=f(x)
(2)求銷售價為13元/個時每天銷售利潤
(3)如銷售利潤為360元,那么銷售價上漲了多少元?

查看答案和解析>>

同步練習冊答案