分析 (Ⅰ)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,依題意,可求得d與q,從而可求得{an}、{bn}的通項(xiàng)公式;
(Ⅱ)b4<an<b6,即24<3n-1<26,可求得n=6,7,8,…,21,于是滿足b4<an<b6的各項(xiàng)的和為a6+a7+…+a21=S21-S5=,利用等差數(shù)列的求和公式可得答案.
解答 (本小題滿分13分)
解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d.
因?yàn)閍1=2,a5=14,
所以a1+4d=14.
所以d=3.
所以an=3n-1.
所以b3=a3=8.
因?yàn)閎1=2,
因?yàn)?{b_3}={b_1}{q^2}$,
所以q2=4.
因?yàn)閎n>0,
所以q=2.
所以${b_n}=2•{2^{n-1}}={2^n}$.…(6分)
(Ⅱ)因?yàn)閎4<an<b6,即24<3n-1<26,
所以$\frac{17}{3}<n<\frac{65}{3}$,n∈N*.
即n=6,7,8,…,21.
所以滿足b4<an<b6的各項(xiàng)的和為a6+a7+…+a21=S21-S5=$\frac{{21({a_1}+{a_{21}})}}{2}-\frac{{5({a_1}+{a_5})}}{2}$=$\frac{21(2+62)}{2}-\frac{5(2+14)}{2}$=632.…(13分)
點(diǎn)評(píng) 本題考查數(shù)列的求和,考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式的應(yīng)用,考查等差數(shù)列的求和的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 14 | C. | 20 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | ±1 | D. | ±2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com