命題“對于任意正實數(shù)x,都有2x>log3x”的否定是
 
考點:命題的否定
專題:簡易邏輯
分析:直接利用全稱命題的否定是特稱命題寫出結果即可.
解答: 解:因為全稱命題的否定是特稱命題,所以命題“對于任意正實數(shù)x,都有2x>log3x”的否定是:存在正實數(shù)x,有2x≤log3x.
故答案為:存在正實數(shù)x,有2x≤log3x.
點評:本題考查全稱命題與特稱命題的否定關系,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

橢圓的對稱中心在坐標原點,一個頂點為A(0,2),右焦點F與點B(
2
,
2
)的距離為2,則橢圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市缺水問題比較突出,為了制定節(jié)水管理辦法,對全市居民某年的月均用水量進行了抽樣調查,其中n位居民的月均用水量分別為x1,…,xn(單位:噸).根據(jù)圖所示的程序框圖,若n=2,且x1,x2分別為1,2,則輸出的結果s為.( 。
A、1
B、
3
2
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A,B,C所對的邊分別為a,b,c,若1+
tanA
tanB
=
2c
b
,則A=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-2)2=16,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(Ⅰ)證明直線l恒過定點;
(Ⅱ)判斷直線l與圓C的位置關系;
(Ⅲ)當點M(x,y)在圓C上運動時,求
y
x+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|-1≤x≤1,x∈Z},N={0,1,2},則M∩N為( 。
A、{1}
B、{0,1,2}
C、{x|0≤x≤1}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F是橢圓E:
x2
a2
+
y2
b2
=1,(a>b>0)的左焦點,直線l方程為x=-
a2
c
(其中a為橢圓的長半軸長,c為半焦距),設直線l與x軸交于P點,MN為橢圓E的長軸,已知|MN|=8,且|PM|=2|MF|.
(1)求橢圓E的標準方程;
(2)過點P作直線m與橢圓E交于A,B兩點,求證:∠AFM=∠BFN;
(3)在(2)的條件下,求三角形△ABF面積的最大值及此時直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
A、若向量
a
與向量
b
的方向相反,則稱向量
a
為向量
b
的相反向量
B、若向量
a
與向量
b
的模相等,則稱向量
a
與向量
b
為相等向量
C、若向量
a
的模等于0,則向量
a
等于0
D、若向量
a
是單位向量,則向量
a
的模等于1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為2a,點E為棱CC1的中點.
(Ⅰ)求證:A1E⊥BD;
(Ⅱ)求平面A1BD⊥平面EBD;
(Ⅲ)求四面體A1-BDE的體積.

查看答案和解析>>

同步練習冊答案