9.《算法統(tǒng)宗》是明朝程大位所著數(shù)學(xué)名著,其中有這樣一段表述:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一”,其意大致為:有一七層寶塔,每層懸掛的紅燈數(shù)為上一層的兩倍,共有381盞燈,則塔從上至下的第三層有( 。┍K燈.
A.14B.12C.8D.10

分析 設(shè)第一層有a盞燈,則由題意知第一層至第七層的燈的盞數(shù)構(gòu)成一個以a1為首項,以$\frac{1}{2}$為公比的等比數(shù)列,由此能求出結(jié)果.

解答 解:設(shè)第一層有a盞燈,
則由題意知第一層至第七層的燈的盞數(shù)構(gòu)成一個以a1為首項,以$\frac{1}{2}$為公比的等比數(shù)列,
∴$\frac{{a}_{1}(1-\frac{1}{{2}^{7}})}{1-\frac{1}{2}}$=381,
解得a1=192,
∴a5=a1×($\frac{1}{2}$)4=192×$\frac{1}{16}$=12,
故選:B.

點評 本題考查頂層有幾盞燈的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若數(shù)列{an}滿足a1=1,a2=2,an=an-1+an-2(n∈N*,n>2),則a6=( 。
A.13B.8C.21D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+a|+|x-1|.
(1)當(dāng)a=3時,求不等式f(x)≥x+3a的解集;
(2)若f(x)≤|x-4|的解集包含[0,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,M是BC的中點,AM=1,點P在AM上,且滿足$\overrightarrow{PA}$=-$\overrightarrow{PM}$,則$\overrightarrow{PA}$•($\overrightarrow{PB}+\overrightarrow{PC}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)正項等比數(shù)列{an}的前n項和為Sn,且滿足S3=3a3+2a2,a4=8.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列bn=log2an,求{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知矩形ABCD中,AB=2BC,若橢圓的焦點是AD,BC的中點,且點A,B,C,D在橢圓上,則該橢圓的離心率為$\frac{\sqrt{17}-1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…+$\frac{{{x^{2015}}}}{2015}$;g(x)=1-x+$\frac{x^2}{2}$-$\frac{x^3}{3}$+$\frac{x^4}{4}$-…-$\frac{{{x^{2015}}}}{2015}$;設(shè)函數(shù)F(x)=[f(x+3)]2015•[g(x-4)]2016,且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知回歸直線的斜率為-1,樣本點中心為(1,2),則回歸直線方程為( 。
A.$\widehat{y}$=x+3B.$\widehat{y}$=-x+3C.$\widehat{y}$=-x-3D.$\widehat{y}$=-2x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)y=sin(2x-$\frac{π}{3}$)的單調(diào)遞減區(qū)間,并敘述怎樣由函數(shù)y=sinx的圖象變換得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象.

查看答案和解析>>

同步練習(xí)冊答案