函數(shù)f(x)=2x-3零點所在的一個區(qū)間是( )
A.(-1,0)
B.(0,1)
C.(1,2)
D.(2,3)
【答案】分析:將選項中各區(qū)間兩端點值代入f(x),滿足f(a)•f(b)<0(a,b為區(qū)間兩端點)的為所求的答案.
解答:解:∵f(-1)=-3<0
f(0)=1-3=-2<0
f(1)=2-3=-1<0,
f(2)=4-3=1>0
∴f(1)f(2)<0,
∴函數(shù)的零點在(1,2)區(qū)間上,
故選C.
點評:本題考查了函數(shù)零點的概念與零點定理的應(yīng)用,屬于容易題.函數(shù)零點附近函數(shù)值的符號相反,這類選擇題通常采用代入排除的方法求解
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,則滿足f(x)=4的x的值是(  )
A、2B、16
C、2或16D、-2或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足:a1=1,a n+1=f(
1
an
),
(1)求數(shù)列{an}的通項公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn;
(3)設(shè)bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+b3+…+bn,若Sn
k-2004
2
對一切n∈N*成立,求最小的正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1
,對任意m∈[-3,3],不等式f(mx-1)+f(2x)<0恒成立,則實數(shù)x的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x+6, x∈[1,2]
x+7, x∈[-1,1]
,則f(x)的最大值、最小值為
10,6
10,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+x-5,那么方程f(x)=0的解所在區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案