如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折疊,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,
(1) 求證:DE⊥AC
(2)求DE與平面BEC所成角的正弦值
(3)直線BE上是否存在一點(diǎn)M,使得CM//平面ADE,若存在,求M的位置,不存在,請(qǐng)說明理由。
(1)以A為原點(diǎn),以射線AB,AC,AE為坐標(biāo)軸建立空間直角坐標(biāo)系,
則由C作平面ABD的垂線,垂足為F,則F為BC的中點(diǎn),,所以點(diǎn)C的坐標(biāo)為,
故:DE⊥AC(2)(3)存在M為BE的中點(diǎn),使得CM//平面ADE
解析試題分析:以A為原點(diǎn),以射線AB,AC,AE為坐標(biāo)軸建立空間直角坐標(biāo)系,
則
由C作平面ABD的垂線,垂足為F,則F為BC的中點(diǎn),,
所以點(diǎn)C的坐標(biāo)為。
(1),故:DE⊥AC。
(2)
設(shè)平面BCE的法向量為,則,
設(shè)線面角為,
(3)設(shè),則。若CM//平面ADE,則,所以,故存在M為BE的中點(diǎn),使得CM//平面ADE。
考點(diǎn):空間線面平行的判定及性質(zhì),線面所成角的求解
點(diǎn)評(píng):采用空間向量的方法求解立體幾何問題的步驟:建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)及相關(guān)向量的坐標(biāo),將坐標(biāo)代入證明或計(jì)算求解的對(duì)應(yīng)公式求解,空間向量法要求學(xué)生數(shù)據(jù)處理時(shí)認(rèn)真仔細(xì)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點(diǎn),且.證明:平面PAD⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,為圓的直徑,點(diǎn)、在圓上,矩形所在的平面和圓所在的平面互相垂直,且,.
(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:; (2)求證:;
(3)設(shè)為中點(diǎn),在邊上找一點(diǎn),使平面,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點(diǎn)。
(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點(diǎn)N,使AN與MC1成角60°?若存在,確定點(diǎn)N的位置;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方體ABCD—A1B1C1D1棱長(zhǎng)為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動(dòng)點(diǎn),且EH⊥FG.
(1)求GH長(zhǎng)的取值范圍;
(2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com