A. | $2\sqrt{2}$ | B. | $3\sqrt{2}$ | C. | 3 | D. | 2 |
分析 設(shè)雙曲線C2的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{_{2}^{2}}$=1(a2,b2>0).a(chǎn)1=a.由題意可知:F1F2=F2M=2c,由定義可得:F1M+F2M=2a1,F(xiàn)1M-F2M=2a2,可得:a1-a2=2c,于是$\frac{{a}_{1}}{c}-\frac{{a}_{2}}{c}$=2,即可得出.
解答 解:設(shè)雙曲線C2的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{_{2}^{2}}$=1(a2,b2>0).a(chǎn)1=a.
由題意可知:F1F2=F2M=2c,
又∵F1M+F2M=2a1,F(xiàn)1M-F2M=2a2,
∴F1M+2c=2a1,F(xiàn)1M-2c=2a2,
兩式相減,可得:a1-a2=2c,
∴$\frac{{a}_{1}}{c}-\frac{{a}_{2}}{c}$=2,∴$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2.
點(diǎn)評 本題考查了橢圓與雙曲線的定義標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1≤m<0 | B. | -1<m≤0 | C. | -1≤m≤0 | D. | -1<m<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,-1)∪(3,+∞) | C. | (-4,2) | D. | (-∞,-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | [-1,0] | C. | (-1,-$\frac{1}{3}$) | D. | [-1,-$\frac{1}{3}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com