設(shè)f(x)=ax+b同時(shí)滿足條件f(0)=2和對(duì)任意x∈R都有f(x+1)=2f(x)-1成立.
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)的定義域?yàn)閇-2,2],且在定義域內(nèi)g(x)=f(x),且函數(shù)h(x)的圖象與g(x)的圖象關(guān)于直線y=x對(duì)稱,求h(x);
(3)求函數(shù)y=g(x)+h(x)的值域.

解:(1)由f(0)=2,得b=1,
由f(x+1)=2f(x)-1,得ax(a-2)=0,
由ax>0得a=2,
所以f(x)=2x+1.
(2)由題意知,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)=2x+1.
設(shè)點(diǎn)P(x,y)是函數(shù)h(x)的圖象上任意一點(diǎn),它關(guān)于直線y=x對(duì)稱的點(diǎn)為P′(y,x),依題意點(diǎn)P′(y,x)應(yīng)該在函數(shù)g(x)的圖象上,即x=2y+1,
所以y=log2(x-1),即h(x)=log2(x-1).
(3)由已知得y=log2(x-1)+2x+1,且兩個(gè)函數(shù)的公共定義域是[,2],
所以函數(shù)y=g(x)+h(x)=log2(x-1)+2x+1(x∈[,2]).
由于函數(shù)g(x)=2x+1與h(x)=log2(x-1)在區(qū)間[,2]上均為增函數(shù),
因此當(dāng)x=時(shí),y=2-1,
當(dāng)x=2時(shí),y=5,
所以函數(shù)y=g(x)+h(x)(x∈[,2])的值域?yàn)閇2-1,5].
分析:(1)將x=0代入f(x)b的值;寫出恒成立的不等式,令a-2等于0,求出a的值.
(2)寫出g(x)的解析式;利用關(guān)于y=x對(duì)稱的函數(shù)互為反函數(shù);求出g(x)的反函數(shù)即h(x).
(3)利用兩個(gè)增函數(shù)的和函數(shù)為增函數(shù);利用函數(shù)的單調(diào)性求出函數(shù)的最值.
點(diǎn)評(píng):本題考查利用待定系數(shù)法求函數(shù)的解析式、考查關(guān)于直線y=x對(duì)稱的兩個(gè)函數(shù)互為反函數(shù)、反函數(shù)的求法、利用函數(shù)的單調(diào)性求函數(shù)的值域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、設(shè)f(x)=ax+b同時(shí)滿足條件f(0)=2和對(duì)任意x∈R都有f(x+1)=2f(x)-1成立.
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)的定義域?yàn)閇-2,2],且在定義域內(nèi)g(x)=f(x),且函數(shù)h(x)的圖象與g(x)的圖象關(guān)于直線y=x對(duì)稱,求h(x);
(3)求函數(shù)y=g(x)+h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、設(shè)f(x)=ax-b,其中a,b為實(shí)數(shù),f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若f7(x)=128x+381,則a+b=
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•汕頭二模)設(shè)f(x)=ax+b,a≠0,Sn=f(1)+f(2)+f(3)+…+f(n),若f(3)=5,且f(1),f(2),f(5)成等比數(shù)列,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•溫州一模)設(shè)f(x)=ax+b(其中a,b為實(shí)數(shù)),f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若2a+b=-2,且fk(x)=-243x+244,則k=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國高校自主招生數(shù)學(xué)模擬試卷(三)(解析版) 題型:填空題

設(shè)f(x)=ax-b,其中a,b為實(shí)數(shù),f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若f7(x)=128x+381,則a+b=   

查看答案和解析>>

同步練習(xí)冊(cè)答案