【題目】某校從高三年級期末考試的學(xué)生中抽出60名學(xué)生,其成績(均為整數(shù))的頻率分布直方圖如圖所示:

1)估計這次考試的及格率(60分及以上為及格)和平均分;

2)按分層抽樣從成績是80分以上(包括80分)的學(xué)生中選取6人,再從這6人中選取兩人作為代表參加交流活動,求他們在不同分?jǐn)?shù)段的概率.

【答案】1)及格率是80%;平均分是分(2

【解析】

1)由頻率分布直方圖直接可計算得及格率以及平均分;

2)按分層抽樣知5A,B,C,D,E,1F,寫出基本事件,事件“不同分?jǐn)?shù)段”所包含的基本事件數(shù)5種,利用古典概型即可得到結(jié)論.

1)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,頻率和為,所以抽樣學(xué)生成績的合格率是80%.-

利用組中值估算抽樣學(xué)生的平均分:

.

估計這次考試的平均分是

2)按分層抽樣抽取5A,B,C,D,E1F.,則基本事件(AB),(A,C),(A,D),(A,E)(A,F),(B,C),(B,D)(B,E),(B,F),(CD),(CE),(C,F),(D,E)(D,F),(EF),共15種,事件“不同分?jǐn)?shù)段”所包含的基本事件數(shù)5種,

故所求概率為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知點為拋物線的焦點,點在拋物線上,且

)求拋物線的方程;

)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知10件不同產(chǎn)品中有3件是次品,現(xiàn)對它們一一取出(不放回)進行檢測,直至取出所有次品為止.

(1)若恰在第5次取到第一件次品,第10次才取到最后一件次品,則這樣的不同測試方法數(shù)有多少?

(2)若恰在第6次取到最后一件次品,則這樣的不同測試方法數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機器故障進行查找詢問、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機構(gòu)調(diào)研了患者對網(wǎng)絡(luò)看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡(luò)看病,實地看病兩種方式進行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:

1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡(luò)看病、實地看病那種方式的滿意度更高?并說明理由;

2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:

滿意

不滿意

總計

網(wǎng)絡(luò)看病

實地看病

總計

并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?

3)從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的首項為0,公差為a;等差數(shù)列的首項為0,公差為b.由數(shù)列構(gòu)造數(shù)表M,與數(shù)表;

記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=12,3,…).

記數(shù)表中位于第i行第j列的元素為,其中,,.如:,.

1)設(shè),請計算,,;

2)設(shè),試求的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表

3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的甲、乙兩名工程師因為工作需要,各自選購一臺筆記本電腦.該公司提供了三款筆記本電腦作為備選,這三款筆記本電腦在某電商平臺的銷量和用戶評分如下表所示:

型號

銷量(臺)

2000

2000

4000

用戶評分

8

6.5

9.5

若甲選購某款筆記本電腦的概率與對應(yīng)的銷量成正比,乙選購某款筆記本電腦的概率與對應(yīng)的用戶評分減去5的值成正比,且他們兩人選購筆記本電腦互不影響.

(1)求甲、乙兩人選購不同款筆記本電腦的概率;

(2)若公司給購買這三款筆記本電腦的員工一定的補貼,補貼標(biāo)準(zhǔn)如下表:

型號

補貼(千元)

3

4

5

記甲、乙兩人獲得的公司補貼之和為千元,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.直線1的極坐標(biāo)方程為

(Ⅰ)求C的普通方程和l的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線lx軸和y軸的交點分別為A,B,點M在曲線C上,求MAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知拋物線Cy22pxp0)的焦點為F,過F垂直于x軸的直線與C相交于A、B兩點,△AOB的面積為2

1)求拋物線C的方程;

2)若過P,0)的直線與C相交于M,N兩點,且2,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案