解答題

直角梯形ABCD中,BC∥AD,AD⊥AB,,VA⊥平面ABCD.

(1)

求證:VC⊥CD.

(2)

,求CV與平面VAD所成的角.

答案:
解析:

(1)

解:連結(jié)AC取AD中點G,連CG,則ABCG為正方形又VA⊥平面ABCD,DC⊥AC,由三垂線定理:VC⊥CD

(2)

解:連VG由是CV與平面VAD所成的角

∴CV與平面VAD所成角為30°


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題(1)(2)(3)三個選答題,每小題5分,請考生任選1題作答,如果多做,則按所做的前1題計分.
(1)(選修4-1,幾何證明選講)如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
a
2
,點E,F(xiàn)分別為線段AB,CD的中點,則EF=
a
2
a
2

(2)(選修4-4,坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點的極坐標(biāo)為
2
,
4
2
4

(3)(選修4-1,不等式選講)已知函數(shù)f(x)=|x-a|.若不等式f(x)≤3的解集為{x|-1≤x≤5},則實數(shù)a的值為
a=2
a=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007屆莆田四中高三第四次月考數(shù)學(xué)試卷(文科) 題型:044

解答題

直角梯形ABCD中,BC∥AD,AD⊥AB,,VA⊥平面ABCD.

(1)

求證:VC⊥CD.

(2)

,求CV與平面VAD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題(1)(2)(3)三個選答題,每小題5分,請考生任選1題作答,如果多做,則按所做的前1題計分.
(1)(選修4-1,幾何證明選講)如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=數(shù)學(xué)公式,點E,F(xiàn)分別為線段AB,CD的中點,則EF=________.
(2)(選修4-4,坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點的極坐標(biāo)為________.
(3)(選修4-1,不等式選講)已知函數(shù)f(x)=|x-a|.若不等式f(x)≤3的解集為{x|-1≤x≤5},則實數(shù)a的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年陜西省西安市高三第三次質(zhì)檢數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

本題(1)(2)(3)三個選答題,每小題5分,請考生任選1題作答,如果多做,則按所做的前1題計分.
(1)(選修4-1,幾何證明選講)如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點E,F(xiàn)分別為線段AB,CD的中點,則EF=   
(2)(選修4-4,坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點的極坐標(biāo)為   
(3)(選修4-1,不等式選講)已知函數(shù)f(x)=|x-a|.若不等式f(x)≤3的解集為{x|-1≤x≤5},則實數(shù)a的值為   

查看答案和解析>>

同步練習(xí)冊答案