已知f(x)是定義在R上的奇函數(shù),且f(1)=0,f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x>0時總有xf′(x)<f(x)成立,則不等式f(x)>0的解集為( 。
分析:由已知當(dāng)x>0時總有xf′(x)<f(x)成立,可判斷函數(shù)g(x)=
f(x)
x
為減函數(shù),由已知f(x)是定義在R上的奇函數(shù),可證明g(x)為(-∞,0)∪(0,+∞)上的偶函數(shù),根據(jù)函數(shù)g(x)在(0,+∞)上的單調(diào)性和奇偶性,模擬g(x)的圖象,而不等式f(x)>0等價于x•g(x)>0,數(shù)形結(jié)合解不等式組即可
解答:解:設(shè)g(x)=
f(x)
x
,則g(x)的導(dǎo)數(shù)為g′(x)=
xf′(x)-f(x)
x2
,
∵當(dāng)x>0時總有xf′(x)<f(x)成立,即當(dāng)x>0時,g′(x)恒小于0,
∴當(dāng)x>0時,函數(shù)g(x)=
f(x)
x
為減函數(shù),
又∵g(-x)=
f(-x)
-x
=
-f(x)
-x
=
f(x)
x
=g(x)
∴函數(shù)g(x)為定義域上的偶函數(shù)
又∵g(1)=
f(1)
1
=0
∴函數(shù)g(x)的圖象性質(zhì)類似如圖:數(shù)形結(jié)合可得
不等式f(x)>0?x•g(x)>0?
x>0
g(x)>0
x<0
g(x)<0

?0<x<1或x<-1
故選B
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,并由函數(shù)的奇偶性和單調(diào)性解不等式,屬于綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊答案