已知二次函數(shù)f(x)=ax2+bx+c,滿(mǎn)足f(0)=f(1)=0,且f(x)的最小值是-
1
4

(1)求f(x)的解析式;
(2)設(shè)直線(xiàn)l:y=t2-t(其中0<t<
1
2
,t為常數(shù)),若直線(xiàn)l與f(x)的圖象以及y軸所圍成封閉圖形的面積是S1(t),直線(xiàn)l與f(x)的圖象所圍成封閉圖形的面積是S2(t),設(shè)g(t)=S1(t)+
1
2
S2(t)
,當(dāng)g(t)取最小值時(shí),求t的值.
(3)已知m≥0,n≥0,求證:
1
2
(m+n)2+
1
4
(m+n)≥m
n
+n
m
分析:(1)利用已知條件選擇待定系數(shù)法確定函數(shù)解析式是解決本題的關(guān)鍵,充分借助二次函數(shù)的對(duì)稱(chēng)性解決該問(wèn)題可以事半功倍;
(2)利用定積分表示出所求的圖形面積是解決本題的關(guān)鍵.得出關(guān)于t的函數(shù)關(guān)系,根據(jù)函數(shù)解析式的類(lèi)型選擇合適的方法求解該函數(shù)的最值,利用導(dǎo)數(shù)求解其最小值;
(3)利用均值不等式進(jìn)行放縮是證明該不等式的關(guān)鍵,根據(jù)已知的函數(shù)可以得出關(guān)于m,n的不等式.
解答:解:(1)由二次函數(shù)圖象的對(duì)稱(chēng)性,可設(shè)f(x)=a(x-
1
2
)2-
1
4
,又f(0)=0∴a=1
故f(x)=x2-x.
(2)據(jù)題意,直線(xiàn)l與f(x)的圖象的交點(diǎn)坐標(biāo)為(t,t2-t),由定積分的幾何意義知g(t)=S1(t)+
1
2
S2(t)=-
t
0
[(t2-t)-(x2-x)]dx-
1
2
t
[(x2-x)-(t2-t)]dx

=
t
0
[(x2-x)-(t2-t)]dx+
1
2
t
[(t2-t)-(x2-x)]dx

=[(
x3
3
-
x2
2
)-(t2-t)x]
|
t
0
+[(t2-t)x-(
x3
3
-
x2
2
)]
|
1
2
t

=-
4
3
t3+
3
2
t2-
1
2
t+
1
12

g′(t)=-4t2+3t-
1
2
=-
1
2
(8t2-6t+1)=-
1
2
(4t-1)(2t-1)

g′(t)=0?t=
1
4
,或t=
1
2
(不合題意,舍去)
當(dāng)t∈(0,
1
4
),g′(t)<0
,g(t)遞減,t∈[
1
4
,
1
2
)
,g'(t)≥0,g(t)遞增,
故當(dāng)t=
1
4
時(shí),g(t)有最小值.
(3)∵f(x)的最小值為-
1
4
m-
m
≥-
1
4
n-
n
≥-
1
4

①+②得:m+n+
1
2
m
+
n

1
2
(m+n)2+
1
4
(m+n)=
1
2
(m+n)(m+n+
1
2
)

由均值不等式和③知:
1
2
(m+n)≥
mn
;?m+n+
1
2
m
+
n

1
2
(m+n)2+
1
4
(m+n)=
1
2
(m+n)(m+n+
1
2
)

mn
(
m
+
n
)=m
n
+n
m
點(diǎn)評(píng):本題考查函數(shù)解析式的求解,考查二次函數(shù)的對(duì)稱(chēng)性.考查定積分求解曲邊圖形面積的思想和方法,導(dǎo)數(shù)求函數(shù)最值的工具作用.考查函數(shù)思想解決證明不等式問(wèn)題、用到了均值定理進(jìn)行放縮.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且滿(mǎn)足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問(wèn):是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過(guò)原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案