分析 根據(jù)an+1=Sn+1-Sn及前n項(xiàng)和Sn=$\frac{1}{8}$(an+2)2,可以得到(an+1+an)(an+1-an-4)=0,可得數(shù)列{an}的通項(xiàng)公式,進(jìn)而由bn=$\frac{1}{2}$an-30得到數(shù)列{bn}的通項(xiàng)公式,然后可求數(shù)列{bn}的前n項(xiàng)和,再由此求其最小值,最小值有兩種求法,其一是轉(zhuǎn)化為二次函數(shù)的最值,其二是找出正負(fù)轉(zhuǎn)折的項(xiàng).即可得到結(jié)論.
解答 解:∵an+1=Sn+1-Sn=$\frac{1}{8}$(an+1+2)2-$\frac{1}{8}$(an+2)2,
∴8an+1=(an+1+2)2-(an+2)2,
∴(an+1-2)2-(an+2)2=0,(an+1+an)(an+1-an-4)=0.
∵an∈N*,
∴an+1+an≠0,
∴an+1-an-4=0.
即an+1-an=4,∴數(shù)列{an}是等差數(shù)列.
當(dāng)n=1時(shí),a1=S1=$\frac{1}{8}$(a1+2)2,解得a1=2.
∴an=4n-2,
bn=$\frac{1}{2}$an-30=2n-31,(以下用兩種方法求解)
法一:由bn=2n-31可得:首項(xiàng)b1=-29,公差d=2
∴數(shù)列{bn}的前n項(xiàng)和sn=n2-30n=(n-15)2-225
∴當(dāng)n=15時(shí),sn=-225為最小,
法二:由$\left\{\begin{array}{l}{2n-31≤0}\\{2(n+1)-31≥0}\end{array}\right.$得$\frac{29}{2}$≤n≤$\frac{31}{2}$.∵n∈N*,∴n=15,
∴{an}前15項(xiàng)為負(fù)值,以后各項(xiàng)均為正值.
∴S15最小,
故答案為:15
點(diǎn)評(píng) 本題主要考查數(shù)列遞推公式的應(yīng)用,根據(jù)條件判斷數(shù)列{an}是等差數(shù)列是解決本題的關(guān)鍵,在求出等差數(shù)列前n項(xiàng)和的最值問(wèn)題是數(shù)列中較為常見(jiàn)的一種類(lèi)型,主要方法有兩種:法一只適用于等差數(shù)列的和的最值問(wèn)題,對(duì)于其他數(shù)列,因?yàn)椴荒苻D(zhuǎn)化為關(guān)于n的二次函數(shù),所以無(wú)法使用,有一定的局限性;法二是常規(guī)方法,使用范圍廣,其特點(diǎn)是找到遞增或遞減的數(shù)列中正項(xiàng)和負(fù)項(xiàng)的轉(zhuǎn)折“點(diǎn)”而得到答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{2}{3}$ | B. | $-\frac{3}{4}$ | C. | $\frac{6}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,4] | B. | (-∞,2] | C. | [0,2] | D. | [0,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com