【題目】在如圖所示的三棱錐中,是邊長為2的等邊三角形,,是的中位線,為線段的中點(diǎn).
(1)證明:.
(2)若二面角為直二面角,求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】
(1)如圖,由中位線可得,取的中點(diǎn)為,取的中點(diǎn),連接,可證平面,從而可證.
(2)建立如圖所示的空間直角坐標(biāo)系,計(jì)算出平面的法向量和平面的法向量的夾角的余弦值后可得二面角的余弦值.
(1)如圖,取的中點(diǎn)為,取的中點(diǎn),連接.
因?yàn)?/span>是邊長為2的等邊三角形,,所以.
因?yàn)?/span>,故,故.
因?yàn)?/span>,所以且,所以.
因?yàn)?/span>,故,所以.
因?yàn)?/span>,平面,平面,故平面,
因?yàn)?/span>平面,.
因?yàn)?/span>,故,所以.
(2)由(1)可得,
所以為二面角的平面角,
因?yàn)槎娼?/span>為直二面角,所以即.
建立如圖所示的空間直角坐標(biāo)系,
則.
故,,.
設(shè)平面的法向量為,
則即,故,取,則,
所以.
設(shè)平面的法向量為,
則即,取,則,
故,
所以,
因?yàn)槎娼?/span>的平面角為銳角,
故二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)的坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】謝爾賓斯基三角形(英語:Sierpinskitriangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.具體操作是:先取一個(gè)實(shí)心正三角形(圖1),挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形)(圖2),然后在剩下的三個(gè)小三角形中又各挖去一個(gè)“中心三角形”(圖3),我們用黑色三角形代表剩下的面積,用上面的方法可以無限連續(xù)地作下去.若設(shè)操作次數(shù)為3(每挖去一次中心三角形算一次操作),在圖中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自黑色三角形的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),.
(1)若的圖象在處的切線恰好也是圖象的切線.
①求實(shí)數(shù)的值;
②若方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
(2)當(dāng)時(shí),求證:對于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù), ,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)圖象上不同兩點(diǎn),,,處的切線的斜率分別是,,規(guī)定叫曲線在點(diǎn)與點(diǎn)之間的“彎曲度”,給出以下命題:
(1)函數(shù)圖象上兩點(diǎn)、的橫坐標(biāo)分別為1,2,則;
(2)存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
(3)設(shè)點(diǎn)、是拋物線,上不同的兩點(diǎn),則;
(4)設(shè)曲線上不同兩點(diǎn),,,,且,若恒成立,則實(shí)數(shù)的取值范圍是;
以上正確命題的序號為__(寫出所有正確的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),不等式的解集有且只有一個(gè)元素,設(shè)數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
(3)設(shè)各項(xiàng)均不為0的數(shù)列中,滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號數(shù),令,求數(shù)列的變號數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)是圓上一動點(diǎn),動點(diǎn)滿足,點(diǎn)在直線上,且.
(1)求點(diǎn)的軌跡的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)在直線上,過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,記點(diǎn)到直線的距離分別為,求的最大值,并求出此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動點(diǎn), 為的中點(diǎn).
(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)已知直線與軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com