分析 (1)利用等腰三角形的性質(zhì)先判斷AD是∠CAB的平分線,再根據(jù)切線長定理得到AE=AF,接著利用等腰三角形的性質(zhì)判斷AD⊥EF,然后根據(jù)平行線的判定可得到結(jié)論;
(2)先證明AD是EF的垂直平分線得到O在AD上;連結(jié)OE,OM,再根據(jù)切線的性質(zhì)得到OE⊥AE,接著證明△ABC和△AEF都是等邊三角形,則根據(jù)等邊三角形的性質(zhì)和含30度的直角三角形三邊的關(guān)系計算出OE、AO,再利用勾股定理計算出OD,然后根據(jù)等邊三角形的面積公式,利用四邊形EBCF的面積=S△ABC-S△AEF進行計算即可.
解答 (1)證明:∵△ABC是等腰三角形,AD⊥BC,
∴AD是∠CAB的平分線,
又∵☉O分別與AB,AC相切于點E,F(xiàn),
∴AE=AF,
∴AD⊥EF,
∴EF∥BC;
(2)解:由(1)知,AE=AF,AD⊥EF,
∴AD是EF的垂直平分線,
∴O在AD上;
連結(jié)OE,OM,
∵AB為切線,
∴OE⊥AE,
∴AG=OG=OE,
即AO=2OE,
∴∠OAE=30°,
∴∠EAF=60°,
∴△ABC和△AEF都是等邊三角形,
∴AE=2 $\sqrt{3}$,
∴OE=$\frac{\sqrt{3}}{3}$AE=2,AO=2OE=4,
∵OM=OE=2,DM=$\frac{1}{2}$MN=$\sqrt{3}$,
∴OD═1,
∴AD=AO+OD=5,
∴BD=$\frac{\sqrt{3}}{3}$AD=$\frac{5\sqrt{3}}{3}$,
∴AB=2BD=$\frac{10\sqrt{3}}{3}$,
∴四邊形EBCF的面積=S△ABC-S△AEF
=$\frac{\sqrt{3}}{4}$•( $\frac{10\sqrt{3}}{3}$)2-$\frac{\sqrt{3}}{4}$×(2 $\sqrt{3}$)2
=$\frac{16\sqrt{3}}{3}$.
點評 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了等腰三角形和等邊三角形的判定與性質(zhì).記住含30度的直角三角形三邊的關(guān)系可方便求直角三角形的邊長.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m?α,n∥m⇒n∥α | B. | m?α,n⊥m⇒n⊥α | C. | m⊥α,m∥n,n∥β⇒α⊥β | D. | m?α,n?β,m∥n⇒α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=xsinx | B. | y=$\frac{{{e^x}-{e^{-x}}}}{2}$ | C. | y=xlgx | D. | y=x3+sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com