【題目】已知函數(shù)f(x)=ax2+bx+1(a,b∈R且a≠0),F(xiàn)(x)= .
(1)若f(﹣1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的解析式;
(2)在(1)的條件下,當(dāng)x∈[﹣2,2]時,g(x)=f(x)﹣kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)是偶函數(shù),判斷F(m)+F(n)是否大于零.
【答案】
(1)解:∵f(﹣1)=0,
∴a﹣b+1=0,①
∵函數(shù)f(x)的值域?yàn)閇0,+∞),
∴a>0且判別式△=0,即b2﹣4a=0,②
由①②得a=1,b=2.
∴f(x)=ax2+bx+1=x2+2x+1.
∴F(x)=
(2)解:g(x)=f(x)﹣kx=x2+(2﹣k)x+1,
函數(shù)的對稱軸為x= ,
要使函數(shù)g(x)=f(x)﹣kx,在x∈[﹣2,2]上是單調(diào)函數(shù),
則區(qū)間[﹣2,2]必在對稱軸的一側(cè),
即 或 ,
解得k≥6或k≤﹣2.
即實(shí)數(shù)k的取值范圍是k≥6或k≤﹣2
(3)解:∵f(x)是偶函數(shù),∴f(﹣x)=f(x),
即ax2﹣bx+1=ax2+bx+1,
∴2bx=0,解得b=0.
∴f(x)=ax2+1.
∴F(x)= .
∵mn<0,m+n>0,a>0,
不妨設(shè)m>n,則m>0,n<0,
∴F(m)+F(n)=am2+1﹣an2﹣1=a(m2﹣n2)=a(m﹣n)(m+n),
∵m+n>0,a>0,m﹣n>0,
∴F(m)+F(n)=a(m﹣n)(m+n)>0
【解析】(1)利用f(﹣1)=0和函數(shù)f(x)的值域?yàn)閇0,+∞),建立方程關(guān)系,即可求出a,b,從而確定F(x)的表達(dá)式;(2)在(1)的條件下,當(dāng)x∈[﹣2,2]時,利用g(x)=f(x)﹣kx的單調(diào)區(qū)間與對稱軸之間的關(guān)系建立不等式進(jìn)行求解即可.(3)利用mn<0,m+n>0,a>0,且f(x)是偶函數(shù),得到b=0,然后判斷F(m)+F(n)的取值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較),還要掌握函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2﹣4x+m=0有實(shí)根,命題q:﹣1≤m≤5.若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)=ax2+2a是區(qū)間[﹣a,a2]上的偶函數(shù),又g(x)=f(x﹣1),則g(0),g( ),g(3)的大小關(guān)系是( )
A.g( )<g(0)<g(3)
B.g(0)<g( )<g(3)??
C.g( )<g(3)<g(0)
D.g(3)<g( )<g(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求的值:
人數(shù) | 數(shù)學(xué) | |||
優(yōu)秀 | 良好 | 及格 | ||
地理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | 4 |
②在地理成績及格的學(xué)生中,已知, ,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足:Sn= an2+ an+ (n∈N*)
(1)求an
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 證明:對一切正整數(shù)n,都有Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線,的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(1)將放在容器Ⅰ中,的一端置于點(diǎn)A處,另一端置于側(cè)棱上,求沒入水中部分的長度;
(2)將放在容器Ⅱ中,的一端置于點(diǎn)E處,另一端置于側(cè)棱上,求沒入水中部分的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),.
(1)若曲線在點(diǎn)處的切線與直線垂直,求的值;
(2)若存在極小值時,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,如果存在兩個不相等的正數(shù),使得,求證:.
請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=2﹣f(x),若函數(shù)y= 與y=f(x)圖象的交點(diǎn)為(x1 , y1),(x2 , y2),…,(xm , ym),則 (xi+yi)=( )
A.0
B.m
C.2m
D.4m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com