已知橢圓的離心率,左、右焦點(diǎn)分別為F1、F2,點(diǎn)滿足F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)如果圓E:被橢圓C所覆蓋,求圓的半徑r的最大值.
【答案】分析:(1)由橢圓C的離心率和點(diǎn)F2在線段PF1的中垂線上知|F1F2|=|PF2|,由此推出,從而可求出橢圓C的方程.
(2)設(shè)P(x,y)是橢圓C上任意一點(diǎn),則,,由此可求出圓的半徑r的最大值.
解答:解:(1)橢圓C的離心率,得,
其中,橢圓C的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),又點(diǎn)F2在線段PF1的中垂線上,
∴|F1F2|=|PF2|,∴
解得c=1,a2=2,b2=1,
∴橢圓C的方程為
(2)設(shè)P(x,y)是橢圓C上任意一點(diǎn),
,,∵,
).
當(dāng)x=1時,|PE|min=,
∴半徑r的最大值為
點(diǎn)評:本題綜合考查橢圓的性質(zhì)和圓的知識,解題時要仔細(xì)審題,認(rèn)真計(jì)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省焦作市高三第一次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率,左、右焦點(diǎn)分別為,定點(diǎn)P,點(diǎn)在線段的中垂線上.

(1)求橢圓C的方程;

(2)設(shè)直線與橢圓C交于M、N兩點(diǎn),直線的傾斜角分別為,求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省焦作市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率,左、右焦點(diǎn)分別為,定點(diǎn)P,點(diǎn)在線段的中垂線上.

(1)求橢圓C的方程;

(2)設(shè)直線與橢圓C交于M、N兩點(diǎn),直線的傾斜角分別為,求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省望江縣高三第一次月考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓的離心率,左、右焦點(diǎn)分別為F1、F2,

定點(diǎn)P(2,),點(diǎn)F2在線段PF1的中垂線上.

⑴求橢圓C的方程;

⑵設(shè)直線l:y=kx+m與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的傾斜角分別為α,β,且α+β=π,求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省開封市高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓的離心率,左、右焦點(diǎn)分別為F1、F2,點(diǎn),點(diǎn)F2在線段PF1的中垂線上。

(I)求橢圓C的方程;

(II)設(shè)直線與橢圓C交于M、N兩點(diǎn),直線與F2N的傾斜角分別為,試問直線l是否過定點(diǎn)?若過,求該定點(diǎn)的坐標(biāo)。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)全真模擬試卷6(文科)(解析版) 題型:解答題

已知橢圓的離心率,左、右焦點(diǎn)分別為F1、F2,點(diǎn)滿足F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)如果圓E:被橢圓C所覆蓋,求圓的半徑r的最大值.

查看答案和解析>>

同步練習(xí)冊答案