【題目】到2020年,我國將全面建立起新的高考制度,新高考采用模式,其中語文、數(shù)學、英語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學校采用分層抽樣的方法從高一年級1000名(其中男生550名,女生450名)學生中抽取了名學生進行調(diào)查.

(1)已知抽取的名學生中有女生45名,求的值及抽取的男生的人數(shù).

(2)該校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調(diào)查(假定每名學生在這兩個科目中必須選擇一個科目,且只能選擇一個科目),得到如下列聯(lián)表.

選擇“物理”

選擇“地理”

總計

男生

10

女生

25

總計

(i)請將列聯(lián)表補充完整,并判斷是否有以上的把握認為選擇科目與性別有關系.

(ii)在抽取的選擇“地理”的學生中按性別分層抽樣抽取6名,再從這6名學生中抽取2名,求這2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

【答案】(1) ,55人 (2) (i)見解析;(ii)

【解析】

1)根據(jù)題意可得求解即可得出的值,進而可得抽取的男生人數(shù);

(2)

(i)根據(jù)題中數(shù)據(jù)先完善列聯(lián)表,再由題中公式,求出的值,結(jié)合臨界值表即可的結(jié)果;

(ii)先由題易知抽取的選擇“地理”的6名學生中,有2名男生,分別記為,,4名女生,分別記為,;用列舉法分別列舉出“6名學生中隨機抽取2名”和“其中至少有1名男生”所包含的基本事件,基本事件個數(shù)比即是所求概率.

解:(1)由題意得,解得,

則抽取的男生的人數(shù)為.

(2)(i)

選擇“物理”

選擇“地理”

總計

男生

45

10

55

女生

25

20

45

總計

70

30

100

,

所以有以上的把握認為送擇科目與性別有關系.

(ii)由題易知抽取的選擇“地理”的6名學生中,有2名男生,分別記為,4名女生,分別記為,,.

從6名學生中隨機抽取2名,有,,,,,,,,,,共15種情況,其中至少有1名男生的有,,,,,,,共9種情況,

故所求概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應關系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢:

下列敘述錯誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個月的空氣質(zhì)量越來越好

D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)

1)若,用“五點法”在給定的坐標系中,畫出函數(shù)上的圖象.

2)若偶函數(shù),求:

3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的倍,縱坐標不變,再向上平移一個單位得到函數(shù)的圖象,求的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經(jīng)過點曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程

(2)過點作直線的垂線交曲線兩點(軸上方),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fxφ)﹣cosωx)(),x0x是函數(shù)的yfx)圖象的兩條相鄰對稱軸.

1)求f)的值;

2)將yfx)的圖象向右平移個單位后,再將所得的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)ygx)的圖象,求ygx)的單調(diào)區(qū)間,并求其在[]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Ea﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點在橢圓E.

)求橢圓E的方程;

)設不過原點O且斜率為的直線l與橢圓E交于不同的兩點AB,線段AB的中點為M,直線OM與橢圓E交于CD,證明:|MA|·|MB|=|MC|·|MD|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列對任意滿足,下面給出關于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為(

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)ax(a,b∈Z),曲線yf(x)在點(2,f(2))處的切線方

程為y3.

(1)f(x)的解析式;

(2)證明:曲線yf(x)上任一點的切線與直線x1和直線yx所圍三角形的面積為定值,

并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,,,分別是,的中點.

1)求異面直線所成角的余弦值;

2)棱上是否存在點,使得∥平面?請證明你的結(jié)論;

3)求直線與平面所成角的余弦值;

查看答案和解析>>

同步練習冊答案