中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn)。若分別過(guò)橢圓的左右焦點(diǎn)、的動(dòng)直線、相交于P點(diǎn),與橢圓分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率、、、滿足.
(1)求橢圓的方程;
(2)是否存在定點(diǎn)M、N,使得為定值.若存在,求出M、N點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
(1);
(2)存在點(diǎn)M、N其坐標(biāo)分別為(0 , -1)、(0, 1),使得為定值.
【解析】
試題分析:(1)設(shè)橢圓方程為,則由題意知,則
,則橢圓方程為,代入點(diǎn)的坐標(biāo)可得
,所求橢圓方程為
(2)當(dāng)直線或斜率不存在時(shí),P點(diǎn)坐標(biāo)為(-1, 0)或(1, 0).
當(dāng)直線斜率存在時(shí),設(shè)斜率分別為,,設(shè),,
由得 ,∴ ,.
,同理.∵, ∴,即.又, ∴.
設(shè),則,即,
由當(dāng)直線或斜率不存在時(shí),P點(diǎn)坐標(biāo)為(-1, 0)或(1, 0)也滿足,∴點(diǎn)橢圓上,則存在點(diǎn)M、N其坐標(biāo)分別為(0 , -1)、(0, 1),使得為定值.
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),直線與橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,結(jié)合橢圓的幾何性質(zhì),應(yīng)用“待定系數(shù)法”求得了橢圓方程。研究直線與圓錐曲線的位置關(guān)系,往往應(yīng)用韋達(dá)定理,通過(guò)“整體代換”,簡(jiǎn)化解題過(guò)程,實(shí)現(xiàn)解題目的。(II)中對(duì)兩直線斜率存在情況進(jìn)行討論,易于忽視。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
MA1 |
A1F1 |
OC |
OD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com