【題目】如圖,四棱柱中,平面,四邊形為平行四邊形,,

1)若,求證:平面;

2)若,,求二面角的余弦值.

【答案】1)見(jiàn)解析;(2

【解析】

1)連接,交于點(diǎn),可證得四邊形為平行四邊形,從而得到,根據(jù)線(xiàn)面平行的判定定理可證得結(jié)論;

(2)在中,由余弦定理可求得,進(jìn)而得到;由線(xiàn)面垂直的性質(zhì)和判定定理可證得平面;作,可知即為所求二面角的平面角,由長(zhǎng)度關(guān)系可求得結(jié)果.

1)證明:如圖所示,連接,交于點(diǎn),連接

,,,

四邊形為平行四邊形,

平面,平面,平面.

(2)解:四邊形為平行四邊形,,

,.

設(shè),由余弦定理得:,解得:

,

平面,,平面,

平面,,

平面,平面

,垂足為,連接,則,

為二面角的平面角.

,,

,即二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,平面,平面平面,是邊長(zhǎng)為2的等邊三角形,,

1)證明:平面平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年慶祝中華人民共和國(guó)成立70周年閱兵式彰顯了中華民族從站起來(lái)、富起來(lái)邁向強(qiáng)起來(lái)的雄心壯志.閱兵式規(guī)模之大、類(lèi)型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱(chēng)“強(qiáng)軍利刃”“強(qiáng)國(guó)之盾”,見(jiàn)證著人民軍隊(duì)邁向世界一流軍隊(duì)的堅(jiān)定步伐.此次大閱兵不僅得到了全中國(guó)人的關(guān)注,還得到了無(wú)數(shù)外國(guó)人的關(guān)注.某單位有6位外國(guó)人,其中關(guān)注此次大閱兵的有5位,若從這6位外國(guó)人中任意選取2位做一次采訪(fǎng),則被采訪(fǎng)者都關(guān)注了此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣共有戶(hù)籍人口60萬(wàn),經(jīng)統(tǒng)計(jì),該縣60歲及以上、百歲以下的人口占比,百歲及以上老人15人.現(xiàn)從該縣60歲及以上、百歲以下的老人中隨機(jī)抽取230人,得到如下頻數(shù)分布表:

年齡段(歲)

人數(shù)(人)

125

75

25

5

(1)從樣本中70歲及以上老人中,采用分層抽樣的方法抽取21人,進(jìn)一步了解他們的生活狀況,則80歲及以上老人應(yīng)抽多少人?

(2)從(1)中所抽取的80歲及以上老人中,再隨機(jī)抽取2人,求抽到90歲及以上老人的概率;

(3)該縣按省委辦公廳、省人民政府辦公廳《關(guān)于加強(qiáng)新時(shí)期老年人優(yōu)待服務(wù)工作的意見(jiàn)》精神,制定如下老年人生活補(bǔ)貼措施,由省、市、縣三級(jí)財(cái)政分級(jí)撥款:

①本縣戶(hù)籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險(xiǎn)實(shí)施辦法每月領(lǐng)取55元基本養(yǎng)老金;

②本縣戶(hù)籍80歲及以上老年人額外享受高齡老人生活補(bǔ)貼;

(a)百歲及以上老年人,每人每月發(fā)放345元的生活補(bǔ)貼;

(b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補(bǔ)貼;

(c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補(bǔ)貼.

試估計(jì)政府執(zhí)行此項(xiàng)補(bǔ)貼措施的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的右焦點(diǎn)為,半焦距,點(diǎn)到右準(zhǔn)線(xiàn)的距離為,過(guò)點(diǎn)作雙曲線(xiàn)的兩條互相垂直的弦,,設(shè),的中點(diǎn)分別為.

1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;

2)證明:直線(xiàn)必過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,點(diǎn)EAB上,AE2EB2,且DEAB.DE為折痕把△ADE折起,使點(diǎn)A到達(dá)點(diǎn)F的位置,且∠FEB60°.

1)求證:平面BFC⊥平面BCDE;

2)若直線(xiàn)DF與平面BCDE所成角的正切值為,求二面角EDFC的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列a,bc是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為dd0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q

1)求證:|q|1;

2)若a1n1,求d的值;

3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較st的大小,并求插入的n個(gè)數(shù)的乘積(用a,cn表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的正視圖是一個(gè)底邊長(zhǎng)為4腰長(zhǎng)為3的等腰三角形,圖1、圖2分別是四棱錐的側(cè)視圖和俯視圖.

1)求證:;

2)求四棱錐的體積及側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A軸相切,且與圓外切;

(1)求動(dòng)圓圓心的軌跡的方程;

(2)若直線(xiàn)過(guò)定點(diǎn),且與軌跡交于兩點(diǎn),與圓交于、兩點(diǎn),若點(diǎn)到直線(xiàn)的距離為,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案