1.已知矩陣A=$[\begin{array}{l}{1}&{a}\\{2}&{3}\end{array}]$的一個特征值是-1,則矩陣A的另一個特征值是5.

分析 根據(jù)特征多項式的一個零點為-1,可得a=4,再回代到方程f(λ)=0即可解出另一個特征值為λ=5.最后利用求特征向量的一般步驟,可求出其對應的一個特征向量.

解答 解:矩陣A的特征多項式是f(λ)=(λ-1)(λ-3)-2a,
由f(-1)=0得a=4,
令f(λ)=0,則λ=-1或λ=5,
解方程組$\left\{\begin{array}{l}{(5-1)x-4y=0}\\{-2x+(5-3)y=0}\end{array}\right.$,
可得一組不為零的解是$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
則矩陣A的另一個特征值是5,
故答案為:5

點評 此題考查了特征值與特征向量,解題思路為:給出含有字母參數(shù)的矩陣,在知其一個特征值的情況下求另一個特征值和相應的特征向量.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在四棱錐A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,$AC=\sqrt{2}$.
(1)證明:DE⊥平面ACD;
(2)求二面角B-AD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖是某圓拱形橋一孔圓拱的示意圖.這個圖的圓拱跨度AB=20m,拱高OP=4m,建造時每間隔4m需要用一根支柱支撐,則支柱A2P2=3.86m
(參考數(shù)據(jù):$\sqrt{30}$=5.478,$\sqrt{33}$=5.744,精確到0.01m).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=|x-1|+|x-2|,記f(x)的最小值為k.
(1)解不等式f(x)≤x+1;
(2)是否存在正數(shù)a、b,同時滿足:2a+b=k,$\frac{1}{a}$+$\frac{2}$=4?并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若函數(shù)f(x)=a2(2-a)x是指數(shù)函數(shù),則a等于-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知點R是圓心為Q的圓(x+$\sqrt{3}$)2+y2=16上的一個動點,N($\sqrt{3}$,0)為定點,線段RN的中垂線與直線QR交于點T,設T點的軌跡為曲線C.
(1)求曲線C的方程;
(2)過圓x2+y2=1上的動點P作圓x2+y2=1的切線l,與曲線C交于不同兩點A,B,用幾何畫板軟件可畫出線段AB的中點M的軌跡是如圖所示的漂亮的曲線,求該曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖:已知PA=PB,∠APB=2∠ACB,AC與PB交于點D,若PB=4,PD=3,AD=5,則DC=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)g(x)=ax3+x2+x(a為實數(shù))
(1)試討論函數(shù)g(x)的單調(diào)性;
(2)若對?x∈(0,+∞)恒有$g(x)≤lnx+\frac{1}{x}$,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤6的解集為{x|-4≤x≤8},求實數(shù)a的值;
(Ⅱ)在(1)的條件下,對任意實數(shù)x都有f(x)≥m-f(-x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案