設(shè)函數(shù),其中,角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn),且.
(1)若點(diǎn)的坐標(biāo)為(-),求的值;
(2)若點(diǎn)為平面區(qū)域上的一個動點(diǎn),試確定角的取值范圍,并求函數(shù)的值域.
(1);(2).
解析試題分析:(1)由三角函數(shù)的定義求解與,進(jìn)而求的值;(2)由平面區(qū)域的可行域可得角的范圍,再求解的值域,本題將三角化簡求值與線性規(guī)劃知識聯(lián)系在一起,具有新穎性.
試題解析:(1)由三角函數(shù)的定義,得
故 4分
(2)作出平面區(qū)域(即三角形區(qū)域ABC)如圖所示,
其中于是 7分
又且
故當(dāng),即時,取得最小值,且最小值為1.
當(dāng),即時,取得最大值,且最大值為.
故函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/a/1rkuy2.png" style="vertical-align:middle;" />. 12分
考點(diǎn):1.三角化簡求值;2.三角函數(shù)的值域;3.線性規(guī)劃可行域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,生產(chǎn)每噸產(chǎn)品所需的勞動力和煤、電耗如下表:
已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)因條件限制,該企業(yè)僅有勞動力300個,煤360 t,并且供電局只能供電200 kW,試問該企業(yè)生產(chǎn)A,B兩種產(chǎn)品各多少噸,才能獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司承擔(dān)了每天至少搬運(yùn)280噸水泥的任務(wù),已知該公司有6輛A型卡車和8輛B型卡車.又已知A型卡車每天每輛的運(yùn)載量為30噸,成本費(fèi)為0.9千元;B型卡車每天每輛的運(yùn)載量為40噸,成本費(fèi)為1千元.
(1)如果你是公司的經(jīng)理,為使公司所花的成本費(fèi)最小,每天應(yīng)派出A型卡車、B型卡車各多少輛?
(2)在(1)的所求區(qū)域內(nèi),求目標(biāo)函數(shù)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)x,y滿足約束條件,
(1)畫出不等式表示的平面區(qū)域;
(2)若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,求a、b滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知關(guān)于x的不等式(其中),若不等式有解,則實(shí)數(shù)a的取值范圍是( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
下列各函數(shù)中,最小值為2的是 ( )
A.y=x+ |
B.y= |
C.y=logax+logxa(a>0,x>0且a≠1,x≠1) |
D.y=3-x+3x(x>0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com