若2+是x2-(tanθ+cotθ)x+1=0的一個根,則sin2θ=________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-9x2cosα+48xcosβ,g(x)=f'(x),且對任意的實(shí)數(shù)t均有g(shù)(1+e-|t|)≥0,g(3+sint)≤0.
(I)求g(2);
(II)求函數(shù)f(x)的解析式;
(Ⅲ)記函數(shù)h(x)=f(x)-
23
x3+(a+9)x2
-(b+24)x(a,b∈R),若y=h(x)在區(qū)間[-1,2]上是單調(diào)減函數(shù),求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知圓的方程是x2+y2=4,求斜率等于1的圓的切線的方程;
(2)若實(shí)數(shù)x,y,t,滿足
x2
9
+
y2
16
=1
且t=x+y,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
3
x

(1)當(dāng)x∈[
1
3
,3]
時(shí),求f(x)的反函數(shù)g(x);
(2)求關(guān)于x的函數(shù)y=[g(x)]2-2ag(x)+3(a≤3)當(dāng)x∈[-1.1]時(shí)的最小值h(a);
(3)我們把同時(shí)滿足下列兩個性質(zhì)的函數(shù)稱為“和諧函數(shù)”:
①函數(shù)在整個定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間[p,q](p<q)使得函數(shù)在區(qū)間[p,q]上的值域?yàn)閇p2,q2].
(Ⅰ)判斷(2)中h(x)是否為“和諧函數(shù)”?若是,求出p,q的值或關(guān)系式;若不是,請說明理由;
(Ⅱ)若關(guān)于x的函數(shù)y=
x2-1
+t(x≥1)是“和諧函數(shù)”,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
tx
(t>0)
和點(diǎn)P(1,0),過點(diǎn)P作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M(x1,y1),N(x2,y2).
(1)求證:x1,x2是關(guān)于x的方程x2+2tx-t=0的兩根;
(2)設(shè)|MN|=g(t),求函數(shù)g(t);
(3)在(2)的條件下,若在區(qū)間[2,16]內(nèi)總存在m+1個實(shí)數(shù)a1,a2,…,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•沈陽二模)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓C的方程是x2+y2-4x=0,圓心為C.在以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,曲線C1ρ=-4
3
sinθ
與圓C相交于A,B兩點(diǎn).
(1)求直線AB的極坐標(biāo)方程;
(2)若過點(diǎn)C(2,0)的曲線C2
x=2+
3
2
t
y=
1
2
t
(t是參數(shù))交直線AB于點(diǎn)D,交y軸于點(diǎn)E,求|CD|:|CE|的值.

查看答案和解析>>

同步練習(xí)冊答案