已知函數(shù)f(x)=2lnx與g(x)=a2x2+ax+1(a>0)
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點(diǎn)P,Q,且曲線y=f(x)和y=g(x)在點(diǎn)P,Q處的切線平行,求實(shí)數(shù)a的值;
(2)f′(x)為f(x)的導(dǎo)函數(shù),若對于任意的x∈(0,+∞),e
1
f′(x)
-mx≥0
恒成立,求實(shí)數(shù)m的最大值;
(3)在(2)的條件下且當(dāng)a取m最大值的
2
e
倍時,當(dāng)x∈[1,e]時,若函數(shù)h(x)=f(x)-kf′(x)的最小值恰為g(x)的最小值,求實(shí)數(shù)k的值.
分析:(1)求導(dǎo)函數(shù),利用曲線y=f(x)和y=g(x)在點(diǎn)P,Q處的切線平行,可得f′(1)=g′(1),從而可求a的值;
(2)對于任意的x∈(0,+∞),e
1
f′(x)
-mx≥0
恒成立,即mx≤e
x
2
,從而m≤(
e
x
2
x
min.構(gòu)建函數(shù),確定函數(shù)的最小值,即可求得m的最大值;
(3)先求在x∈[1,e]時,g(x)min=g(1)=3,從而h(x)=f(x)-kf′(x)=2lnx-
2k
x
在x∈[1,e]時最小值為3,求導(dǎo)數(shù),利用分類討論,確定函數(shù)的單調(diào)性與最值,從而可得結(jié)論.
解答:解:(1)求導(dǎo)函數(shù)可得f′(x)=
2
x
,g(x)=2a2x+a
∵曲線y=f(x)和y=g(x)在點(diǎn)P,Q處的切線平行
∴f′(1)=g′(1)
∴2=2a2+a且a>0
a=
17
-1
4

(2)對于任意的x∈(0,+∞),e
1
f′(x)
-mx≥0
恒成立,即mx≤e
x
2

∴m≤(
e
x
2
x
min
設(shè)F(x)=
e
x
2
x
,則F′(x)=
1
2
e
x
2
(x-2)
x2

當(dāng)x∈(0,2)時,F(xiàn)′(x)<0,∴F(x)在(0,2)上單調(diào)遞減;當(dāng)x∈(2,+∞)時,F(xiàn)′(x)>0,∴F(x)在(2,+∞)上單調(diào)遞增
∴F(x)min=F(2)=
e
2

∴m的最大值為
e
2
;
(3)由(2)可知a=1,故g(x)=x2+x+1在x∈[1,e]時,g(x)min=g(1)=3
∴h(x)=f(x)-kf′(x)=2lnx-
2k
x
在x∈[1,e]時最小值為3
令h′(x)=
2(x+k)
x2
=0
,可得x=-k
①當(dāng)-k≤1,即k≥-1時,h′(x)≥0,此時h(x)在[1,e]上單調(diào)遞增,∴h(x)min=h(1)=-2k=3,∴k=-
3
2
(舍去);
②當(dāng)-k≥e,即k≤-e時,h′(x)≤0,此時h(x)在[1,e]上單調(diào)遞減,∴h(x)min=h(e)=2-
2k
e
=3,∴k=-
e
2
(舍去);
③當(dāng)1<-k<e,即-e<k<-1時,x∈(1,-k)時,h′(x)<0,此時h(x)在[1,-k)上單調(diào)遞減,x∈(-k,e)時,h′(x)>0,此時h(x)在[1,-k)上單調(diào)遞增,∴h(x)min=h(-k)=2ln(-k)+2=3,∴k=-
e
;
綜上可知,k=-
e
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性與最值,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時,值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點(diǎn);
(2)如果函數(shù)的一個零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案