A. | p真q假 | B. | p 假q真 | C. | p真q真 | D. | p 假q假 |
分析 方程x2+x-m=0有實(shí)根可得△=1+4m≥0,解得$m≥-\frac{1}{4}$,從而可判斷命題p,q的真假.
解答 解:P:當(dāng)m>0時(shí),△=1+4m≥0,解得$m≥-\frac{1}{4}$,此時(shí)方程x2+x-m=0有實(shí)根,故p為真命題,
q:p的逆命題:若x2+x-m=0有實(shí)根,則△=1+4m≥0,解得m≥-$\frac{1}{4}$,q為假命題.
故選:A.
點(diǎn)評(píng) 本題主要考查一元二次方程的根的存在條件的應(yīng)用,要判斷方程的根是否存在只要檢驗(yàn)△的取值符號(hào),還要注意命題真假判斷及命題的逆命題的求解,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2k+1 | B. | 2(2k+1) | C. | $\frac{2k+1}{k+1}$ | D. | $\frac{2k+2}{k+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}$或$\frac{2\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com