精英家教網 > 高中數學 > 題目詳情

設函數f(x)=sin(x+60°)+2sin(x-60°)-數學公式
(1)求f(30°)、f(60°)的值;
(2)由(1)你能得到什么結論?并給出你的證明.

解:(1)f(30°)=sin90°+2sin(-30°)-=1-1+0=0,
f(60°)=sin120°+2sin0°-=0;
(2)由(1)得f(x)=0,證明如下:f(x)=sin(x+60°)+2sin(x-60°)-
=sinxcos60°+cosxsin60°+2(sinxcos60°-cosxsin60°)-(cos120°cosx+sin120°sinx)
=
==0
即f(x)=0.
分析:(1)把x=30°和x=60°分別代入函數解析式,利用特殊角的三角函數值求得答案.
(2)推斷出f(x)=0,利用兩角和公式把函數解析式展開后化簡整理即可.
點評:本題主要考查了三角函數的恒等變換與化簡求值.要求考生能熟練記憶三角函數的基本公式,并能靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(
π8
,-1).
(1)求φ;  
(2)求函數y=f(x)的周期和單調增區(qū)間;
(3)在給定的坐標系上畫出函數y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(2π+?)(-π<?<0),y=f(x)圖象的一條對稱軸是直線x=
π8

(Ⅰ)求?;
(Ⅱ)求函數y=f(x)的單調增區(qū)間;
(Ⅲ)證明直線5x-2y+c=0與函數y=f(x)的圖象不相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=
π8

(1)求φ;
(2)怎樣由函數y=sin x的圖象變換得到函數f(x)的圖象,試敘述這一過程.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)將函數f(x)的圖象向右平移
π
3
個單位長度,得到函數g(x)的圖象,求g (x)在區(qū)間[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),給出以下四個論斷:
①它的圖象關于直線x=
π
12
對稱;        
②它的周期為π;
③它的圖象關于點(
π
3
,0)對稱;      
④在區(qū)間[-
π
6
,0]上是增函數.
以其中兩個論斷作為條件,余下兩個論斷作為結論,寫出你認為正確的兩個命題:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步練習冊答案