設(shè)數(shù)列,滿足,,且,

(1)求數(shù)列的通項(xiàng)公式;

(2)對(duì)一切,證明成立;

(3)記數(shù)列的前項(xiàng)和分別是,證明

 

 

 

 

 

 

【答案】

 解:(1)由,得,即數(shù)列{}是以為首項(xiàng),以為公比的等比數(shù)列,……..3分

(2)因?yàn)?a >,,所以要證明,只需證明,即證,即證明成立,構(gòu)造函數(shù)),,當(dāng)時(shí),即在()上單調(diào)遞減,故

,即,

對(duì)一切都成立,所以!7分

(3),由(2)可知,

利用錯(cuò)位相減求得:

因?yàn)?a >,所以

,所以。…..12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=0且
1
1-an+1
-
1
1-an
=1

(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1-
an+1
n
,記Sn=
n
k=1
bk
,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=0且anan+1-2an+1+1=0(n∈N*).
(I)證明:數(shù)列{
1
1-an
}
是等差數(shù)列;
(II)設(shè)數(shù)列bn=(an-1)2,Sn是數(shù)列{bn}的前n項(xiàng)和,證明:
1
2
Sn<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•楊浦區(qū)一模)設(shè)數(shù)列{xn}滿足xn≠1且(n∈N*),前n項(xiàng)和為Sn.已知點(diǎn)p1(x1,S1),P2(x2,s2),…Pn(xn,sn)都在直線y=kx+b上(其中常數(shù)b,k且k≠1,b≠0),又yn=log
12
 xn
(1)求證:數(shù)列{xn]是等比數(shù)列;
(2)若yn=18-3n,求實(shí)數(shù)k,b的值;
(3)如果存在t、s∈N*,s≠t使得點(diǎn)(t,yt)和點(diǎn)(s,yt)都在直線y=2x+1上.問(wèn)是否存在正整數(shù)M,當(dāng)n>M時(shí),xn>1恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列,滿足,,且,

(1)求數(shù)列的通項(xiàng)公式;(2)對(duì)一切,證明成立;

(3)記數(shù)列,的前項(xiàng)和分別是,證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{xn}滿足xn≠1且(n∈N*),前n項(xiàng)和為Sn.已知點(diǎn)p1(x1,S1),P2(x2,s2),…Pn(xn,sn)都在直線y=kx+b上(其中常數(shù)b,k且k≠1,b≠0),又yn=log數(shù)學(xué)公式數(shù)學(xué)公式
(1)求證:數(shù)列{xn]是等比數(shù)列;
(2)若yn=18-3n,求實(shí)數(shù)k,b的值;
(3)如果存在t、s∈N*,s≠t使得點(diǎn)(t,yt)和點(diǎn)(s,yt)都在直線y=2x+1上.問(wèn)是否存在正整數(shù)M,當(dāng)n>M時(shí),xn>1恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案