由原點(diǎn)O向三次曲線y=x3-3x2引切線,切于異于原點(diǎn)的點(diǎn)P1(x1,y1),再由P1引此曲線的切線,切于異于點(diǎn)P1的點(diǎn)P2(x2,y2),如此繼續(xù)下去,得到點(diǎn)列{Pn(xn,yn)}.

(1)求x1;

(2)求xnxn+1滿足的關(guān)系式;

(3)求數(shù)列{xn}的通項(xiàng)公式.

解:(1)x1=.                                                                                                     ?

(2)過曲線上的點(diǎn)Pn+1(xn+1,yn+1)的切線方程為?

y-(xn+13-3xn+12)=(3xn+12-6xn+1)(x-xn+1),?

 

而此切線過點(diǎn)Pn(xn,yn),則有?

xn3-3xn2-(xn+13-3xn+12)=(3xn+12-6xn+1)(xn-xn+1)xn+2xn+1=3.                                              ?

(3)由xn+2xn+1=3xn+1-1=-(xn-1)xn=1-(-)n.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由原點(diǎn)O向三次曲線y=x3-3ax2(a≠0)引切線,切點(diǎn)為P1(x1,y1)(O,P1兩點(diǎn)不重合),再由P1引此曲線的切線,切于點(diǎn)P2(x2,y2)(P1,P2不重合),如此繼續(xù)下去,得到點(diǎn)列:{Pn(xn,yn)}
(1)求x1;
(2)求xn與xn+1滿足的關(guān)系式;
(3)若a>0,試判斷xn與a的大小關(guān)系,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由原點(diǎn)O向三次曲線y=x3-3ax2+bx(a≠0)引切線,切于不同于點(diǎn)O的點(diǎn)P1(x1,y1),再由P1引此曲線的切線,切于不同于P1的點(diǎn)P2(x2,y2),如此繼續(xù)地作下去,…,得到點(diǎn)列{Pn(xn,yn)},試回答下列問題:
(1)求x1;
(2)求xn與xn+1的關(guān)系;
(3)若a>0,求證:當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí),xn>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

由原點(diǎn)O向三次曲線y=x3-3ax2(a≠0)引切線,切點(diǎn)為P1(x1,y1)(O,P1兩點(diǎn)不重合),再由P1引此曲線的切線,切于點(diǎn)P2(x2,y2)(P1,P2不重合),如此繼續(xù)下去,得到點(diǎn)列:{Pn(xn,yn)}
(1)求x1
(2)求xn與xn+1滿足的關(guān)系式;
(3)若a>0,試判斷xn與a的大小關(guān)系,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省吉安市白鷺洲中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

由原點(diǎn)O向三次曲線y=x3-3ax2+bx (a≠0)引切線,切于不同于點(diǎn)O的點(diǎn)P1(x1,y1),再由P1引此曲線的切線,切于不同于P1的點(diǎn)P2(x2,y2),如此繼續(xù)地作下去,…,得到點(diǎn)列{ P n(x n,y n)},試回答下列問題:
(1)求x1;
(2)求xn與xn+1的關(guān)系;
(3)若a>0,求證:當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí),xn>a.

查看答案和解析>>

同步練習(xí)冊(cè)答案