在正方體ABCD-A1B1C1D1中,以D1、B1、C、A為頂點(diǎn)的四面體與正方體的體積之比為(  )
分析:利用正方體的體積減去4個(gè)正三棱錐的體積即可得到以D1、B1、C、A為頂點(diǎn)的四面體的體積,再求出以D1、B1、C、A為頂點(diǎn)的四面體與正方體的體積之比即可.
解答:解:設(shè)正方體的棱長(zhǎng)為1,如圖.
以D1、B1、C、A為頂點(diǎn)的四面體的體積為:正方體的體積減去4個(gè)正三棱錐的體積,
即1-4×
1
3
×
1
2
×1×1×1=
1
3

則以D1、B1、C、A為頂點(diǎn)的四面體與正方體的體積之比為
1
3
1
=1:3.
故選C.
點(diǎn)評(píng):本題考查幾何體的體積的求法,考查轉(zhuǎn)化思想,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、在正方體ABCD-A′B′C′D′中,過對(duì)角線BD′的一個(gè)平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結(jié)論正確的為
①③④
.(寫出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點(diǎn),則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點(diǎn). 
(1)若M為BB′的中點(diǎn),證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對(duì)角線BD′的一個(gè)平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案