直線y=kx+1與曲線y=x3+ax+b相切于點A(1,3),則b的值為    
【答案】分析:由于切點在直線與曲線上,將切點的坐標代入兩個方程,得到關于a,b,k 的方程,再求出在點(1,3)處的切線的斜率的值,即利用導數(shù)求出在x=1處的導函數(shù)值,結合導數(shù)的幾何意義求出切線的斜率,再列出一個等式,最后解方程組即可得.從而問題解決.
解答:解:∵直線y=kx+1與曲線y=x3+ax+b相切于點A(1,3),
…①
又∵y=x3+ax+b,
∴y'=3x2+ax,當x=1時,y'=3+a得切線的斜率為3+a,所以k=3+a;…②
∴由①②得:b=3.
故答案為:3.
點評:本小題主要考查直線的斜率、導數(shù)的幾何意義、利用導數(shù)研究曲線上某點切線方程等基礎知識,考查運算求解能力.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)設雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長為2
3
,漸近線方程是y=±
3
x
,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
OA
OB

(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設雙曲線C:數(shù)學公式的虛軸長為2數(shù)學公式,漸近線方程是y=數(shù)學公式,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且數(shù)學公式
(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市閔行區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

設雙曲線C:的虛軸長為2,漸近線方程是y=,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

同步練習冊答案