好利來蛋糕店某種蛋糕每個(gè)成本為6元,每個(gè)售價(jià)為x(6<x<11)元,該蛋糕年銷售量為m萬個(gè),若已知
585
8
-m
(x-
21
4
)2
成正比,且售價(jià)為10元時(shí),年銷售量為28萬個(gè).
(1)求該蛋糕年銷售利潤y關(guān)于售價(jià)x的函數(shù)關(guān)系式;
(2)求售價(jià)為多少時(shí),該蛋糕的年利潤最大,并求出最大年利潤.
考點(diǎn):函數(shù)最值的應(yīng)用
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)利用
585
8
-m
(x-
21
4
)2
成正比,且售價(jià)為10元時(shí),年銷售量為28萬個(gè),求出k的值,從而可得m,即可求該蛋糕年銷售利潤y關(guān)于售價(jià)x的函數(shù)關(guān)系式;
(2)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可求得結(jié)論.
解答: 解:(1)設(shè)
585
8
-m
=k(x-
21
4
)2
,
由x=10時(shí),m=28,解得:k=2,
m=-2(x-
21
4
)2+
585
8
=-2x2+21x+18

∴y=m(x-6)=(-2x2+21x+18)(x-6)=-2x3+33x2-108x-108(6<x<11)

(2)y′=-6x2+66x-108=-6(x-2)(x-9),
y′>0,6<x<9;y′<0,9<x<11;
∴x=9元時(shí),年利潤最大,最大為135萬元.
點(diǎn)評:本題考查利用函數(shù)知識解決實(shí)際問題,考查導(dǎo)數(shù)知識的運(yùn)用,確定函數(shù)解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=(x-a)2lnx,a∈R.
(1)x=e是y=f(x)極值點(diǎn),求a.
(2)求a范圍使得對任意x∈(0,3e]恒有f(x)≤4e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(lnx+1)(x>0).
(Ⅰ)令F(x)=-
1
2
x2+f
(x),討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)若直線l與曲線y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)兩點(diǎn).求證:x1
x1-x2
f(x1)-f(x2)
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的圖象與y=x+
1
x
的圖象關(guān)于x=1軸對稱,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ex圖象記為曲線C1,O為坐標(biāo)系原點(diǎn)
Ⅰ)過O作曲線C1的切線l,求切線l的方程;
Ⅱ)函數(shù)y=lnx圖象記為曲線C2,點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2上,設(shè)∠POQ=θ,求cosθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a4=20,a3=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an•log 
1
2
an,數(shù)列{bn}的前n項(xiàng)和為Sn,Sn+n•2n+1>50成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出圖中直線的方程,并化為一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程sin2x=sin3x的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

舉世矚目的巴西足球世界杯將于2014年6月在巴西舉行,這是四年一度的足球盛宴,是全世界足球迷的節(jié)日.在每場比賽之前,世界杯組委會(huì)都會(huì)指派裁判員進(jìn)行執(zhí)法.在某場比賽前,有10名裁判可供選擇,其中歐洲裁判3人,亞洲裁判4人,美洲裁判3人.若組委會(huì)要從這10名裁判中任選3人執(zhí)法本次比賽.求:
(1)選出的歐洲裁判人數(shù)多于亞洲裁判人數(shù)的概率;
(2)選出的3人中,歐洲裁判人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案