若復數(shù)z滿足z(1+i)=4i(是虛數(shù)單位),則z=
 
分析:由條件可得z=
4i
1+i
,把分子和分母同時乘以分母的共軛復數(shù)運算可得結果.
解答:解:∵復數(shù)z滿足z(1+i)=4i,∴z=
4i
1+i
=
4i(1-i)
(1+i)(1-i)
=
4+4i
2
=2+2i,
故答案為:2+2i.
點評:本題考查兩個復數(shù)代數(shù)形式的除法,兩個復數(shù)相除,分子和分母同時乘以分母的共軛復數(shù),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z(1+i)=1-i(I是虛數(shù)單位),則其共軛復數(shù)
.
z
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù) z 滿足z•(1+i)=1-i(i是虛數(shù)單位),則z的共軛復數(shù)
.
z
=( 。
A、iB、-iC、1+iD、1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,若復數(shù)z滿足z(1+i)=1-i,則復數(shù)z的實部與虛部的和是( 。
A、0B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z-
3
(1+z)i=1
,則z+z2的值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若復數(shù) z 滿足z•(1+i)=1-i(i是虛數(shù)單位),則z的共軛復數(shù)
.
z
=( 。
A.iB.-iC.1+iD.1-i

查看答案和解析>>

同步練習冊答案