【題目】某種商品在30天內(nèi)每件的銷售價(jià)(元)與時(shí)間(天)的函數(shù)關(guān)系如圖表示,該商品在30天內(nèi)日銷售量(件)與時(shí)間(天)之間的關(guān)系為函數(shù).

1)根據(jù)提供的圖像,寫出商品每件的銷售價(jià)格與時(shí)間的函數(shù)關(guān)系式;

2)若已知,求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天。(日銷售金額=每件的銷售價(jià)格×日銷售量)

【答案】12)第25天時(shí), 銷售金額最大為

【解析】

(1)根據(jù)圖像可知,每件商品的銷售價(jià)格與時(shí)間的函數(shù)關(guān)系式滿足一次函數(shù),根據(jù)圖像中所提供的點(diǎn)進(jìn)行求解與時(shí)間的函數(shù)關(guān)系式;

(2)由日銷售金額=每件的銷售價(jià)格日銷售量,因?yàn)?/span>,結(jié)合所求與時(shí)間的函數(shù)關(guān)系式,可求得日銷售金額的分段函數(shù),進(jìn)而可求得銷售金額最大值.

(1)當(dāng) 設(shè) 將兩點(diǎn)代入得:

:

當(dāng) 設(shè) 將兩點(diǎn)代入得:

:

綜上所述:

(2) 設(shè)銷售額為

當(dāng)時(shí)

當(dāng)時(shí)

當(dāng)時(shí)

當(dāng)時(shí)

綜上所述,25天時(shí), 銷售金額最大為元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為g(x)(萬元),其中固定成本為2萬元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)(萬元)滿足假設(shè)該產(chǎn)品產(chǎn)銷平衡,試根據(jù)上述資料

(Ⅰ)要使工廠有盈利,產(chǎn)量x應(yīng)控制在什么范圍內(nèi);

(Ⅱ)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?

(Ⅲ)當(dāng)盈利最多時(shí),求每臺(tái)產(chǎn)品的售價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的最小值為1,且

(1)求的解析式.

(2)在區(qū)間[-1,1]上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù))以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并取與直角坐標(biāo)系相同的單位長度,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求曲線 的直角坐標(biāo)方程;

(2)若、分別是曲線上的任意點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線相切于點(diǎn).

(1)求實(shí)數(shù)的值;

(2)求以點(diǎn)為圓心,且與拋物線的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,Snan的等差中項(xiàng).

(1)證明:數(shù)列{an}為等差數(shù)列;

(2)若bn=-n+5,求{an·bn}的最大項(xiàng)的值并求出取最大值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個(gè)優(yōu)雅舒適的生活環(huán)境,計(jì)劃建一個(gè)八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個(gè)相同的矩形ABCDEFGH構(gòu)成的面積為200平方米的十字型地域.現(xiàn)計(jì)劃在正方形MNPQ上建花壇,造價(jià)為4200/平方米,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210/平方米,再在四個(gè)空角上鋪草坪,造價(jià)為80/平方米.

1)設(shè)總造價(jià)為S元,AD的邊長為x米,DQ的邊長為y米,試建立S關(guān)于x的函數(shù)關(guān)系式;

2)計(jì)劃至少要投入多少元,才能建造這個(gè)休閑小區(qū).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案