圓O的方程為,圓M方程為,P為圓M上任一點,過P作圓O的切線PA,若PA與圓M的另一個交點為Q,當(dāng)弦PQ的長度最大時,切線PA的斜率是( )
A.7或1 B.或1 C.或-1 D.7或-1
B
【解析】
試題分析:由題意得,弦PQ的長度最大為圓M的直徑,用點斜式設(shè)出直線PA的方程,根據(jù)直線PA和圓O相切,圓心O到直線PA的,離等于圓O的半徑,求出PA的斜率k,即得直線PA的方程.解:當(dāng)直線PA過圓M的圓心M(1,3)時,弦PQ的長度最大為圓M的直徑.設(shè)直線PA的斜率為k,,點斜式求得直線PA的方程為 y-3=k(x-1),即 kx-y+3-k=0.,直線PA和圓O相切得 =k=1或 k=-7,故答案為B
考點:直線和圓的位置關(guān)系
點評:本題考查直線和圓的位置關(guān)系,點到直線的距離公式的應(yīng)用,判斷弦PQ的長度最大為圓M的直徑是解題的關(guān)鍵
科目:高中數(shù)學(xué) 來源: 題型:
|
|
|
|
π |
4 |
2 |
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 1 |
2 |
π |
4 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
1 |
2 |
π |
2 |
| ||
2 |
| ||
2 |
9π |
4 |
9π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省鎮(zhèn)平一高高三下學(xué)期第三次周考文科數(shù)學(xué)試卷 題型:解答題
已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(,1),O為坐標(biāo)原點。
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當(dāng)∠PMQ=60°時,求直線PQ的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com